
Solving Argumentation Problems Using Answer Set
Programming with Quantifiers: Preliminary Report
Wolfgang Faber1

1University of Klagenfurt, Austria

Abstract
Problems in abstract argumentation are typically beyond NP, but stay in the polynomial hierarchy. Answer set
programming with quantifiers, ASP(Q), has recently been proposed as an extension of answer set programming,
suitable for expressing problems in the polynomial hierarchy in arguably elegant ways. Already in the original
paper, argumentation has been mentioned as an application domain for ASP(Q), but to our knowledge this has
not been followed up yet. In this paper we provide a preliminary study of encoding problems in argumentation
using ASP(Q). We also examine the computational behaviour of these encodings.

Keywords
abstract argumentation, answer set programming with quantifiers

1. Introduction

Following Dung’s seminal paper [1], a lot of research has been done on abstract argumentation. Some
of this work was done on defining semantics, other work extended the original notion of argumentation
framework, yet more work studied complexity and provided implementations. Usually, (Dung’s)
argumentation frameworks are defined as labeled graphs, and the computational tasks often involve
reasoning about set relations. These tasks usually stay within the polynomial hierarchy (PH). Since
many tasks are within the second level of the polynomial hierarchy, Answer Set Programming (ASP)
has been suggested early on as a computational back-end for solving argumentation problems [2].

While ASP is a declarative formalism, encoding problems beyond NP is often involved and involves
techniques such as saturation, which are notoriously difficult to handle and read. Several attempts
were made to improve this, the most recent being Answer Set Programming with Quantifiers, ASP(Q),
which combines several ASP parts with quantifiers over answer sets, which is an arguably much more
accessible way of expressing problems beyond NP (but within PH).

It is therefore natural to use ASP(Q) for representing computational tasks arising in abstract argu-
mentation, which we propose in this paper. Actually, one such task has already been discussed in [3],
namely argumentation coherence, which is the problem of deciding whether two semantics (stable and
preferred extensions) coincide for a given argumentation framework. In this paper, we actually take a
step back from this problem and discuss the problem of computing extensions.

In particular, we focus on three “classic” semantics for Dung-style argumentation frameworks,
preferred [1], semi-stable [4] , and stage [5] extensions. The ASP encodings for these semantics use
saturation and are therefore difficult to read and understand. We show that, as expected, ASP(Q)
encodings are very concise and readable. A natural question though is whether there is a performance
penalty to pay for this. We report on preliminary experiments using the ASP(Q) solver pyqasp, which
indicate that there is not a big performance penalty.

We conjecture that many problems in argumentation can be encoded in similarly readable ways,
which would allow for new syntaxtic extensions and semantics to be handled using ASP(Q) relatively
easily, while still providing a reasonable computational tool in terms of performance.

ASPOCP 2024: 17𝑡ℎ Workshop on Answer Set Programming and Other Computing Paradigms, October, 2024, Dallas, USA.
© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

https://creativecommons.org/licenses/by/4.0/deed.en

2. Abstract Argumentation

We recall some definitions of abstract argumentation, originally defined in [1].

Definition 1. An argumentation framework (AF) is a pair 𝐹 = (𝐴,𝑅) where 𝐴 is a set of arguments
and 𝑅 ⊆ 𝐴 × 𝐴. (𝑎, 𝑏) ∈ 𝑅 means that 𝑎 attacks 𝑏. An argument 𝑎 ∈ 𝐴 is defended by 𝑆 ⊆ 𝐴 (in
𝐹) if, for each 𝑏 ∈ 𝐴 such that (𝑏, 𝑎) ∈ 𝑅, there exists a 𝑐 ∈ 𝑆, such that (𝑐, 𝑏) ∈ 𝑅. An argument 𝑎 is
admissible (in 𝐹) w.r.t. a set 𝑆 ⊆ 𝐴 if each 𝑏 ∈ 𝐴 which attacks 𝑎 is defended by 𝑆.

While many semantics have been defined for AFs, we focus here on extension-based semantics,
where an extension is a set of acceptable arguments. There are different extension-based semantics,
reflecting different notions of acceptability. In this paper we look at admissible, preferred, semi-stable,
and stage extensions. The definition mostly follows the one in [6].

Definition 2. Let 𝐹 = (𝐴,𝑅) be an AF. A set 𝑆 ⊆ 𝐴 is said to be conflict-free (in 𝐹), if there are no
𝑎, 𝑏 ∈ 𝑆, such that (𝑎, 𝑏) ∈ 𝑅. For a set 𝑆 ⊆ 𝐴, let the range 𝑆+ be 𝑆 ∪ {𝑥 | ∃𝑦 ∈ 𝑆 : (𝑦, 𝑥) ∈ 𝑅} (so 𝑆
and all arguments attacked from within 𝑆).

A set 𝑆 ⊆ 𝐴 is an admissible extension of 𝐹 , if 𝑆 is conflict-free in 𝐹 and each 𝑎 ∈ 𝑆 is admissible in
𝐹 w.r.t. 𝑆. The set of admissible extensions of 𝐹 is denoted as 𝑎𝑑𝑚(𝐹).

A set 𝑆 ⊆ 𝐴 is an preferred extension of 𝐹 , if 𝑆 ∈ 𝑎𝑑𝑚(𝐹) and there is no 𝑇 ∈ 𝑎𝑑𝑚(𝐹) with 𝑇 ⊃ 𝑆.
The set of preferred extensions of 𝐹 is denoted as 𝑝𝑟𝑓(𝐹).

A set 𝑆 ⊆ 𝐴 is a semi-stable extension of 𝐹 , if 𝑆 ∈ 𝑎𝑑𝑚(𝐹) and there is no 𝑇 ∈ 𝑎𝑑𝑚(𝐹) with
𝑇+ ⊃ 𝑆+. The set of semi-stable extensions of 𝐹 is denoted as 𝑠𝑒𝑚(𝐹).

A set 𝑆 ⊆ 𝐴 is a stage extension of 𝐹 , if 𝑆 is conflict-free in 𝐹 and there is no conflict-free 𝑇 in 𝐹 with
𝑇+ ⊃ 𝑆+. The set of stage extensions of 𝐹 is denoted as 𝑠𝑡𝑔(𝐹).

3. Answer Set Programming with Quantifiers

Answer Set Programming with Quantifiers (ASP(Q)) has been proposed in [7], providing a formalism
reminiscent of Quantified Boolean Formulas, but based on ASP, and quantifying over answer sets rather
than propositional variables. An ASP(Q) program is of the form

□1𝑃1□2𝑃2 · · ·□𝑛𝑃𝑛 : 𝐶,

where, for each 𝑖 ∈ {1, . . . , 𝑛}, □𝑖 ∈ {∃, ∀}, 𝑃𝑖 is an ASP program, and 𝐶 is a stratified normal ASP
program (this is, as intended by the ASP(Q) authors, a “check” in the sense of constraints). ∃ and ∀ are
called existential and universal answer set quantifiers, respectively.

As a brief example, the intuitive reading of an ASP(Q) program ∃𝑃1∀𝑃2 : 𝐶 is that there exists an
answer set 𝐴1 of 𝑃1 such that for each answer set 𝐴2 of 𝑃2 ∪𝐴1 it holds that 𝐶 ∪𝐴2 is consistent (i.e.
has an answer set).

Let us be more precise about the program 𝑃 ∪𝐴, that is, a program 𝑃 being extended by an answer
set 𝐴 (or rather by an interpretation 𝐴): For an interpretation 𝐼 , let 𝑓𝑃 (𝐼) be the ASP program that
contains all atoms in 𝐼 as facts and all atoms 𝑎 appearing in 𝑃 but not in 𝐼 as constraints (i.e. as a rule
⊥ ← 𝑎). Furthermore, for a program 𝑃 and an interpretation 𝐼 , let 𝑓𝑃 (Π, 𝐼) be the ASP(Q) program
obtained from an ASP(Q) program Π by replacing the first program 𝑃1 in Π with 𝑃1 ∪ 𝑓𝑃 (𝐼). Coherence
of an ASP(Q) program is then defined inductively:

• ∃𝑃 : 𝐶 is coherent if there exists an answer set 𝑀 of 𝑃 such that 𝐶 ∪ 𝑓𝑃 (𝑀) has at least one
answer set.

• ∀𝑃 : 𝐶 is coherent if for all answer sets 𝑀 of 𝑃 it holds that 𝐶 ∪ 𝑓𝑃 (𝑀) has at least one answer
set.

• ∃𝑃Π is coherent if there exists an answer set 𝑀 of 𝑃 such that 𝑓𝑃 (Π,𝑀) is coherent.
• ∀𝑃Π is coherent if for all answer sets 𝑀 of 𝑃 it holds that 𝑓𝑃 (Π,𝑀) is coherent.

In addition, for an existential ASP(Q) program Π (one that starts with ∃), the witnessing answer sets
of the first ASP program 𝑃1 are referred to as quantified answer sets.

4. ASP(Q) Encodings

Here, we provide ASP(Q) encodings for preferred, semi-stable, and stage extensions of argumentation
frameworks. Here we assume (𝐴,𝑅) to be given in the apx format, which is in fact an ASP fact base:
for each 𝑎 ∈ 𝐴 it contains a fact arg(a)., and for each (𝑎, 𝑏) ∈ 𝑅 it contains a fact att(a,b).. For
representing an ASP(Q) program we use the pyqasp syntax, in which ∃ and ∀ are replaced by the strings
%@exists and %@forall, respectively, and the colon is replaced by %@constraint.

We begin with the encoding for preferred extensions, which builds on the well-known encoding for
admissible extensions available in the system ASPARTIX1. ASPARTIX is a collection of ASP encodings
for a wide range of argumentation tasks.

%@exists

% apx facts go here

%% Guess S \subseteq A
in(X) :- not out(X), arg(X).
out(X) :- not in(X), arg(X).

%% S has to be conflict-free
:- in(X), in(Y), att(X,Y).

%% Argument X is defeated by S
defeated(X) :- in(Y), att(Y,X).

%% Argument X is not defended by S
not_defended(X) :- att(Y,X), not defeated(Y).

%% Each X \in S has to be defended by S
:- in(X), not_defended(X).

%@forall

%% Guess a set S1 \supseteq S
in1(X) :- in(X).
in1(X) :- not out1(X), arg(X).
out1(X) :- not in1(X), arg(X).

%% Admissibility of S1

%% S1 has to be conflict-free
:- in1(X), in1(Y), att(X,Y).

%% Argument X is defeated by S1
defeated1(X) :- in1(Y), att(Y,X).

%% Argument X is not defended by S1
not_defended1(X) :- att(Y,X), not defeated1(Y).

%% Each X \in S has to be defended by S
:- in1(X), not_defended1(X).

1https://www.dbai.tuwien.ac.at/research/argumentation/aspartix/

https://www.dbai.tuwien.ac.at/research/argumentation/aspartix/

%@constraint

%% If one S1 is a proper superset and admissible, then S is not preferred.
:- in1(X), not in(X), arg(X).

In fact, the admissible extension encoding is essentially duplicated in the ∀ program, with the addition
of a rule that only admits supersets of the admissible extension determined in the ∃ program. The check
just makes sure that no strict superset is actually admissible. It is clear that the quantified answer sets
correspond to preferred extensions.

We next present the encoding for semi-stable extensions, which is similar to the previous ASP(Q)
program, but it additionally defines the ranges of the sets and uses these for the check.

%@exists

% apx facts go here

%% Guess S \subseteq A
in(X) :- not out(X), arg(X).
out(X) :- not in(X), arg(X).

%% S has to be conflict-free
:- in(X), in(Y), att(X,Y).

%% Argument X is defeated by the set S
defeated(X) :- in(Y), att(Y,X).

%% Argument X is not defended by S
not_defended(X) :- att(Y,X), not defeated(Y).

%% Each X \in S has to be defended by S
:- in(X), not_defended(X).

%% S+ : S plus all arguments attacked by any argument in S

inplus(X) :- in(X).
inplus(X) :- in(Y), att(Y,X).

%@forall

%% Guess a set S1 \supseteq S
in1(X) :- in(X).
in1(X) :- not out1(X), arg(X).
out1(X) :- not in1(X), arg(X).

%% Admissibility of S1

%% S1 has to be conflict-free
:- in1(X), in1(Y), att(X,Y).

%% Argument X is defeated by S1
defeated1(X) :- in1(Y), att(Y,X).

%% Argument X is not defended by S1
not_defended1(X) :- att(Y,X), not defeated1(Y).

%% Each X \in S has to be defended by S
:- in1(X), not_defended1(X).

%% S1+ : S1 plus all arguments attacked by any argument in S1

inplus1(X) :- in1(X).
inplus1(X) :- in1(Y), att(Y,X).

%@constraint

%% If one S1+ is a proper superset of S+ and S1 is admissible, then S is not preferred.

:- inplus1(X), not inplus(X), arg(X).

So here it is checked that no range of a superset of an admissible extension is a superset of the range
of the admissible extension. Again it is clear that the quantified answer sets correspond to semi-stable
extensions.

Finally, we present the encoding for stage extensions. Here, we only look at conflict-free sets rather
than admissible extensions, but the check involves the ranges, as for semi-stable extensions.

%@exists

% apx facts go here

%% Guess S \subseteq A
in(X) :- not out(X), arg(X).
out(X) :- not in(X), arg(X).

%% S has to be conflict-free
:- in(X), in(Y), att(X,Y).

%% S+ : S plus all arguments attacked by any argument in S

inplus(X) :- in(X).
inplus(X) :- in(Y), att(Y,X).

%@forall

%% Guess a set S1 \supseteq S
in1(X) :- in(X).

in1(X) :- not out1(X), arg(X).
out1(X) :- not in1(X), arg(X).

inplus1(X) :- in1(X).
inplus1(X) :- in1(Y), att(Y,X).

%% Conflict-freeness of S1

%% S1 has to be conflict-free
:- in1(X), in1(Y), att(X,Y).

%@constraint

%% If one S1+ is a proper superset of S+ and S1 is conflict-free, then S is not a stage extension.

:- inplus1(X), not inplus(X), arg(X).

Again it is clear that the quantified answer sets correspond to stage extensions.

5. Experimental Results

We have conducted some preliminary results with the encodings presented in the previous section. We
have used the 107 instances of the ICCMA 2019 competition2 and ran them using pyqasp in the version
presented in [8]. The machine used was i7-1165G7 at 2.80GHz with 64GiB RAM running Ubuntu 22.04.5
LTS. Since the machine was also running other jobs, we have restricted the memory usage to 8GiB. The
runtime was restricted to 5 minutes. The computational task was to compute one extension.

For preferred extensions, 42 instances were solved within the time limit, with 65 timing out. For
semi-stable extensions, 43 instances were solved within the time limit, with 64 timing out. For stage
extensions, only 17 were solved within the time limit, with 90 timing out. Overall, we believe that this
is an acceptable result, as these are comparatively hard instances.

We have also compared the runtime to the ASPARTIX encodings for clingo. Interestingly, clingo had
memory issues when computing semi-stable extensions, 56 instances exceeded the memory limit. 19
more timed out, leaving 32 solved instances. The picture was quite different when computing stage
extensions: 91 were successfully solved by clingo, and only 16 timed out. Clingo was very performant
for preferred extensions, only 7 timed out.

In Figures 3, 1, and 2 we provide scatter plots comparing pyqasp’s and clingo’s performance. The
runtime for pyqasp on a specific instance determines the vertical position, while the runtime for clingo
for the same instance determines the horizontal position of a dot. So, each dot in these diagrams
represents one instance - if it is in the upper left of the diagram, clingo was faster, if it is in the lower
right, then pyqasp was faster. We can see that pyqasp seems more performant for computing a semi-
stable extension, whereas clingo seems more performant for computing a preferred or stage extension
overall.

6. Conclusions

We have shown that some well-known semantics for argumentation frameworks can be encoded in a
very intuitive way using ASP(Q). While this is not surprising, we believe that these are the most readable
representations available. What we could show in our experiments is that there is no significant penalty
in terms of performance, which was less clear. Indeed, for the semi-stable semantics the more readable
encoding actually also seems to be computationally better with the compared tools, which is perhaps
surprising.

2Folder 2019 in https://argumentationcompetition.org/2021/instances.tar.gz

https://argumentationcompetition.org/2021/instances.tar.gz

0 50 100 150 200 250 300

0

100

200

300

clingo

py
qa

sp

Figure 1: Semi-stable extensions scatter plot

0 50 100 150 200 250 300

0

100

200

300

clingo

py
qa

sp

Figure 2: Stage extensions scatter plot

We believe that this can open the ground for a flexible tool similar to ASPARTIX, which can allow
for rapid prototyping for many variations and extensions of argumentation frameworks.

Acknowledgments

This research was funded in part by the Austrian Science Fund (FWF) projects 10.55776/PIN8782623
and 10.55776/COE12.

References

[1] P. M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic reasoning,
logic programming and n-person games, Artif. Intell. 77 (1995) 321–358. URL: https://doi.org/10.
1016/0004-3702(94)00041-X. doi:10.1016/0004-3702(94)00041-X.

[2] U. Egly, S. A. Gaggl, S. Woltran, ASPARTIX: implementing argumentation frameworks using answer-
set programming, in: M. G. de la Banda, E. Pontelli (Eds.), Logic Programming, 24th International
Conference, ICLP 2008, Udine, Italy, December 9-13 2008, Proceedings, volume 5366 of Lecture Notes

https://doi.org/10.1016/0004-3702(94)00041-X
https://doi.org/10.1016/0004-3702(94)00041-X
http://dx.doi.org/10.1016/0004-3702(94)00041-X

0 50 100 150 200 250 300

0

100

200

300

clingo

py
qa

sp

Figure 3: Preferred extensions scatter plot

in Computer Science, Springer, 2008, pp. 734–738. URL: https://doi.org/10.1007/978-3-540-89982-2_67.
doi:10.1007/978-3-540-89982-2_67.

[3] G. Amendola, B. Cuteri, F. Ricca, M. Truszczynski, Solving problems in the polynomial hierarchy
with ASP(Q), in: G. Gottlob, D. Inclezan, M. Maratea (Eds.), Logic Programming and Nonmonotonic
Reasoning - 16th International Conference, LPNMR 2022, Genova, Italy, September 5-9, 2022,
Proceedings, volume 13416 of Lecture Notes in Computer Science, Springer, 2022, pp. 373–386. URL:
https://doi.org/10.1007/978-3-031-15707-3_29. doi:10.1007/978-3-031-15707-3_29.

[4] M. Caminada, Semi-stable semantics, in: P. E. Dunne, T. J. M. Bench-Capon (Eds.), Computational
Models of Argument: Proceedings of COMMA 2006, September 11-12, 2006, Liverpool, UK, volume
144 of Frontiers in Artificial Intelligence and Applications, IOS Press, 2006, pp. 121–130. URL: http:
//www.booksonline.iospress.nl/Content/View.aspx?piid=1932.

[5] B. Verheij, Two approaches to dialectical argumentation: Admissible sets and argumentation stages,
in: Proc. NAIC, 1996, pp. 357–368.

[6] W. Dvorák, S. A. Gaggl, J. P. Wallner, S. Woltran, Making use of advances in answer-set programming
for abstract argumentation systems, in: H. Tompits, S. Abreu, J. Oetsch, J. Pührer, D. Seipel,
M. Umeda, A. Wolf (Eds.), Applications of Declarative Programming and Knowledge Management -
19th International Conference, INAP 2011, and 25th Workshop on Logic Programming, WLP 2011,
Vienna, Austria, September 28-30, 2011, Revised Selected Papers, volume 7773 of Lecture Notes in
Computer Science, Springer, 2011, pp. 114–133. URL: https://doi.org/10.1007/978-3-642-41524-1_7.
doi:10.1007/978-3-642-41524-1_7.

[7] G. Amendola, F. Ricca, M. Truszczynski, Beyond NP: quantifying over answer sets, Theory Pract.
Log. Program. 19 (2019) 705–721. URL: https://doi.org/10.1017/S1471068419000140. doi:10.1017/
S1471068419000140.

[8] W. Faber, G. Mazzotta, F. Ricca, An efficient solver for ASP(Q), Theory Pract. Log. Program. 23 (2023)
948–964. URL: https://doi.org/10.1017/s1471068423000121. doi:10.1017/S1471068423000121.

A. ASPARTIX Encodings

For completeness and comparison, we also provide the encodings for preferred, semi-stable, and stage
extensions of ASPARTIX3

3https://www.dbai.tuwien.ac.at/research/argumentation/aspartix/

https://doi.org/10.1007/978-3-540-89982-2_67
http://dx.doi.org/10.1007/978-3-540-89982-2_67
https://doi.org/10.1007/978-3-031-15707-3_29
http://dx.doi.org/10.1007/978-3-031-15707-3_29
http://www.booksonline.iospress.nl/Content/View.aspx?piid=1932
http://www.booksonline.iospress.nl/Content/View.aspx?piid=1932
https://doi.org/10.1007/978-3-642-41524-1_7
http://dx.doi.org/10.1007/978-3-642-41524-1_7
https://doi.org/10.1017/S1471068419000140
http://dx.doi.org/10.1017/S1471068419000140
http://dx.doi.org/10.1017/S1471068419000140
https://doi.org/10.1017/s1471068423000121
http://dx.doi.org/10.1017/S1471068423000121
https://www.dbai.tuwien.ac.at/research/argumentation/aspartix/

A.1. Preferred Extensions

%%
% Encoding for preferred extensions
%
%%
%% Guess a set S \subseteq A
in(X) :- not out(X), arg(X).
out(X) :- not in(X), arg(X).

%% S has to be conflict-free
:- in(X), in(Y), att(X,Y).

%% The argument x is defeated by the set S
defeated(X) :- in(Y), att(Y,X).

%% The argument x is not defended by S
not_defended(X) :- att(Y,X), not defeated(Y).

%% All arguments x \in S need to be defended by S (admissibility)
:- in(X), not_defended(X).

%%%
% For the remaining part we need to put an order on the domain.
% Therefore, we define a successor-relation with infinum and supremum
% as follows
%%%

lt(X,Y) :- arg(X),arg(Y), X<Y, not input_error.
nsucc(X,Z) :- lt(X,Y), lt(Y,Z).
succ(X,Y) :- lt(X,Y), not nsucc(X,Y).
ninf(X) :- lt(Y,X).
nsup(X) :- lt(X,Y).
inf(X) :- not ninf(X), arg(X).
sup(X) :- not nsup(X), arg(X).

%% Guess S’ \supseteq S
inN(X) :- in(X).
inN(X) | outN(X) :- out(X).

%% If S’ = S then spoil.
%% Use the sucessor function and check starting from supremum whether
%% elements in S’ is also in S. If this is not the case we "stop"
%% If we reach the supremum we spoil up.

% eq indicates whether a guess for S’ is equal to the guess for S

eq_upto(Y) :- inf(Y), in(Y), inN(Y).
eq_upto(Y) :- inf(Y), out(Y), outN(Y).

eq_upto(Y) :- succ(Z,Y), in(Y), inN(Y), eq_upto(Z).

eq_upto(Y) :- succ(Z,Y), out(Y), outN(Y), eq_upto(Z).

eq :- sup(Y), eq_upto(Y).

%% get those X \notin S’ which are not defeated by S’
%% using successor again...

undefeated_upto(X,Y) :- inf(Y), outN(X), outN(Y).
undefeated_upto(X,Y) :- inf(Y), outN(X), not att(Y,X).

undefeated_upto(X,Y) :- succ(Z,Y), undefeated_upto(X,Z), outN(Y).
undefeated_upto(X,Y) :- succ(Z,Y), undefeated_upto(X,Z), not att(Y,X).

undefeated(X) :- sup(Y), undefeated_upto(X,Y).

%% spoil if the AF is empty
not_empty :- arg(X).
spoil :- not not_empty.

%% spoil if S’ equals S for all preferred extensions
spoil :- eq.

%% S’ has to be conflict-free - otherwise spoil
spoil :- inN(X), inN(Y), att(X,Y).

%% S’ has to be admissible - otherwise spoil
spoil :- inN(X), outN(Y), att(Y,X), undefeated(Y).

inN(X) :- spoil, arg(X).
outN(X) :- spoil, arg(X).

%% do the final spoil-thing ...
:- not spoil.

%in(X)?
#show in/1.

A.2. Semi-stable Extensions

%%
% Encoding for semi-stable extensions
%
%%
%% Guess a set S \subseteq A
in(X) :- not out(X), arg(X).
out(X) :- not in(X), arg(X).

%% S has to be conflict-free
:- in(X), in(Y), att(X,Y).

%% The argument x is defeated by the set S
defeated(X) :- in(Y), att(Y,X).

%% The argument x is not defended by S
not_defended(X) :- att(Y,X), not defeated(Y).

%% All arguments x \in S need to be defended by S (admissibility)
:- in(X), not_defended(X).

%%%
% For the remaining part we need to put an order on the domain.
% Therefore, we define a successor-relation with infinum and supremum
% as follows
%%%

lt(X,Y) :- arg(X),arg(Y), X<Y, not input_error.
nsucc(X,Z) :- lt(X,Y), lt(Y,Z).
succ(X,Y) :- lt(X,Y), not nsucc(X,Y).
ninf(X) :- lt(Y,X).
nsup(X) :- lt(X,Y).
inf(X) :- not ninf(X), arg(X).
sup(X) :- not nsup(X), arg(X).

%% Guess S’ \supseteq S for semi-stable
inN(X) | outN(X) :- arg(X), not input_error.

% eqplus checks wheter S’+ equals S+
eqplus_upto(Y) :- inf(Y), in(Y), inN(Y).
eqplus_upto(Y) :- inf(Y), in(Y), inN(X), att(X,Y).
eqplus_upto(Y) :- inf(Y), in(X), inN(Y), att(X,Y).
eqplus_upto(Y) :- inf(Y), in(X), inN(Z), att(X,Y), att(Z,Y).
eqplus_upto(Y) :- inf(Y), out(Y), outN(Y), not defeated(Y), undefeated(Y).
eqplus_upto(Y) :- succ(Z,Y), in(Y), inN(Y), eqplus_upto(Z).
eqplus_upto(Y) :- succ(Z,Y), in(Y), inN(X), att(X,Y), eqplus_upto(Z).
eqplus_upto(Y) :- succ(Z,Y), in(X), inN(Y), att(X,Y), eqplus_upto(Z).
eqplus_upto(Y) :- succ(Z,Y), in(X), inN(U), att(X,Y), att(U,Y), eqplus_upto(Z).
eqplus_upto(Y) :- succ(Z,Y), out(Y), outN(Y), not defeated(Y), undefeated(Y), eqplus_upto(Z).

eqplus :- sup(Y), eqplus_upto(Y).

%% get those X \notin S’ which are not defeated by S’
%% using successor again...

undefeated_upto(X,Y) :- inf(Y), outN(X), outN(Y).
undefeated_upto(X,Y) :- inf(Y), outN(X), not att(Y,X).

undefeated_upto(X,Y) :- succ(Z,Y), undefeated_upto(X,Z), outN(Y).
undefeated_upto(X,Y) :- succ(Z,Y), undefeated_upto(X,Z), not att(Y,X).

undefeated(X) :- sup(Y), undefeated_upto(X,Y).

%% spoil if the AF is empty

not_empty :- arg(X).
spoil :- not not_empty.

%% spoil if S’+ equals S+
spoil :- eqplus.

%% S’ has to be conflictfree - otherwise spoil
spoil :- inN(X), inN(Y), att(X,Y).

%% spoil if not semi-stable
spoil :- inN(X), outN(Y), att(Y,X), undefeated(Y).
spoil :- in(X), outN(X), undefeated(X).
spoil :- in(Y), att(Y,X), outN(X), undefeated(X).

inN(X) :- spoil, arg(X).
outN(X) :- spoil, arg(X).

%% do the final spoil-thing ...
:- not spoil.

A.3. Stage Extensions

%%
% Encoding for stage extensions
%
%%
%% Guess a set S \subseteq A
in(X) :- not out(X), arg(X).
out(X) :- not in(X), arg(X).

%% S has to be conflict-free
:- in(X), in(Y), att(X,Y).

%%%
% For the remaining part we need to put an order on the domain.
% Therefore, we define a successor-relation with infinum and supremum
% as follows
%%%

lt(X,Y) :- arg(X),arg(Y), X<Y, not input_error.
nsucc(X,Z) :- lt(X,Y), lt(Y,Z).
succ(X,Y) :- lt(X,Y), not nsucc(X,Y).
ninf(X) :- lt(Y,X).
nsup(X) :- lt(X,Y).
inf(X) :- not ninf(X), arg(X).
sup(X) :- not nsup(X), arg(X).

%% Computing the range S+ of the guessed set S
in_range(X) :- in(X).
in_range(X) :- in(Y), att(Y,X).

not_in_range(X) :- arg(X), not in_range(X).

%% Guess S’ \supseteq S for semi-stable
inN(X) | outN(X) :- arg(X), not input_error.

% eqplus checks wheter S’+ equals S+
eqplus_upto(X) :- inf(X), in_range(X), in_rangeN(X).
eqplus_upto(X) :- inf(X), not_in_range(X), not_in_rangeN(X).
eqplus_upto(X) :- succ(Z,X), in_range(X), in_rangeN(X), eqplus_upto(Z).
eqplus_upto(X) :- succ(Z,X), not_in_range(X), not_in_rangeN(X), eqplus_upto(Z).

eqplus :- sup(X), eqplus_upto(X).

%% get those X \notin S’ which are not defeated by S’
%% using successor again...

undefeated_upto(X,Y) :- inf(Y), outN(X), outN(Y).
undefeated_upto(X,Y) :- inf(Y), outN(X), not att(Y,X).

undefeated_upto(X,Y) :- succ(Z,Y), undefeated_upto(X,Z), outN(Y).
undefeated_upto(X,Y) :- succ(Z,Y), undefeated_upto(X,Z), not att(Y,X).

not_in_rangeN(X) :- sup(Y), outN(X), undefeated_upto(X,Y).
in_rangeN(X) :- inN(X).
in_rangeN(X) :- outN(X), inN(Y), att(Y,X).

%% fail if the AF is empty
not_empty :- arg(X).
fail :- not not_empty.

%% S’ has to be conflictfree - otherwise fail
fail :- inN(X), inN(Y), att(X,Y).

%% fail if S’+ equals S+
fail :- eqplus.

%% fail if S’+ \subset S+
fail :- in_range(X), not_in_rangeN(X).

inN(X) :- fail, arg(X).
outN(X) :- fail, arg(X).

%% do the final spoil-thing ...
:- not fail.

	1 Introduction
	2 Abstract Argumentation
	3 Answer Set Programming with Quantifiers
	4 ASP(Q) Encodings
	5 Experimental Results
	6 Conclusions
	A ASPARTIX Encodings
	A.1 Preferred Extensions
	A.2 Semi-stable Extensions
	A.3 Stage Extensions

