
Modeling and Verification of Real-Time
Systems with the Event Calculus

and s(CASP)

Sarat Chandra Varanasi1(B), Joaqúın Arias2, Elmer Salazar1, Fang Li1,
Kinjal Basu1, and Gopal Gupta1

1 The University of Texas at Dallas, Richardson, USA
{sxv153030,ees101020,fang.li,kinjal.basu,gupta}@utdallas.edu

2 CETINIA, Universidad Rey Juan Carlos, Madrid, Spain
joaquin.arias@urjc.es

Abstract. Modeling a cyber-physical system’s requirement specifica-
tions makes it possible to verify its properties w.r.t. the expected behav-
ior. Standard modeling approaches based on automata theory model
these systems at the system architecture level, as they have to explicitly
encode the notion of states and define explicit transitions between these
states. Event Calculus encoding using Answer Set Programming (ASP)
allows for elegant and succinct modeling of these dynamic systems at the
requirements specification level, thanks to the near-zero semantics gap
between the system’s requirement specifications and the Event Calculus
encoding. In this work we propose a framework that uses the EARS nota-
tion to describe the system requirements, and an Event Calculus reasoner
based on s(CASP), a goal-directed Constraint Answer Set Programming
reasoner over the rationals/reals, to directly model these requirements.
We evaluate our proposal by (i) modeling the well-known Train-Gate-
Controller system, a railroad crossing problem, using the EARS notation
and Event Calculus, (ii) translating the specifications into s(CASP), and
(iii) checking safety and liveness of the system.

1 Introduction

Cyber-physical systems are ever increasing in their prominence in our day-to-day
lives. Much research has been published towards modeling and verifying prop-
erties of these systems. Primarily, timed-automata approaches have been stud-
ied and used on industrial scale applications [1,7]. Timed-automata approaches
require an explicit notion of state and transitions between states using clock vari-
ables [2]. Timed automata have also been modeled as constraint logic programs,
where there is little semantic gap between the logic programs and the intended
cyber-physical system that is modeled [10]. Techniques based on co-inductive con-
straint logic programming (Co-CLP) have also been applied in verifying properties
of timed-automata [16,17]. The Co-CLP techniques to study timed systems cul-
minated in the development of Goal-directed Answer Set Programming [6]. More
recently, the well-known Event Calculus (EC) formalism has been used [4] along
c© Springer Nature Switzerland AG 2022
J. Cheney and S. Perri (Eds.): PADL 2022, LNCS 13165, pp. 181–190, 2022.
https://doi.org/10.1007/978-3-030-94479-7_12



182 S. C. Varanasi et al.

with powerful reasoning supported in Answer Set Programming. Additionally, the
work of Arias et al. [3] extends prior work on Co-CLP to support natural reasoning
over hybrid systems, in the language of Event Calculus. Theirs is the first work to
use the s(CASP) system to model Event Calculus along with abductive reasoning
supported in Answer Set Programming. The s(CASP) system has also been used
in knowledge-based methods that analyze faulty requirements in simple avionics
software systems modeled with a single automata [11]. In this paper we model
more complex cyber physical systems that involve multiple automata (for exam-
ple, the well-known Train-Gate-Controller system) in Event Calculus. We start
with the requirements specification written succinctly and concisely in the EARS
notation [14] and model them directly in the Event Calculus. We use the Event
Calculus encoding in Answer Set Programming along with real-time constraints
that can be directly run on the s(CASP) system. Thus, the entire system can be
modeled in s(CASP). Simulation runs can be executed and safety and liveness of
the system automatically checked, with prior knowledge of the physical properties
such as train speed, system response time, and the rate at which the gate rotates.

The Event Calculus encoding in s(CASP) is obtained directly from the
requirements specification written in EARS [14]. The main advantage of this
approach is that design decisions do not “creep” into the encoding. This is
in contrast to automata theoretic approaches (such as those based on timed
automata) where some design decisions have to be made in order to obtain the
timed automata encoding (for example, decisions regarding how to split the sys-
tem into subsystems for each of which an automaton will be designed; what states
and transitions these automata will have, etc.). Thus, verification performed at
the level of timed automata verifies the requirements as rendered in the design
realized in the automata, rather than at the level of requirements specification
itself. In our approach, verification of safety and liveness is performed at the
level of requirements specification. Thus, we can ensure that requirements are
consistent and robust and permit a design that satisfies safety and liveness.

The methods developed in this paper allow us generate simulation runs of the
system as well as check the correctness of its requirements specification. These
experiments allow the user to refine/correct the system requirement specifications.
Errors in specifications are a major source of flaws in software implementations.
The later a defect is discovered in requirements specification, the costlier it is to
fix. Thus, the ability to faithfully model requirements specification of a system can
lead to significant benefits. The main contribution of the paper is the following:

– We show how requirements specification for a cyber-physical system can be
directly modeled in the Event Calculus using ASP. This Event Calculus cod-
ing of requirement specifications can then be directly executed in s(CASP).
The encoding can be used for generating simulation runs and for verification,
for example, of safety and liveness properties.

– Use of the Event Calculus, ASP, and s(CASP) for modeling real-time systems
has been limited to very simple examples. We present the encoding of a
complex system, namely, the canonical Train-Gate-Controller system that
has been widely discussed in the literature [2].



Modeling Realtime Systems with s(CASP) 183

Ubiquitous: always active. The <system name> shall <system response>

State Driven: active as long as the specific state remains true.
WHILE <precondition(s)>, the <system name> shall <system response>

Event Driven: specify how a system must respond when a triggering event occurs.
WHEN <trigger>, the <system name> shall <system response>

Unwanted Behavior: specify the required system response to undesired situations.
IF <trigger>, THEN the <system name> shall <system response>

Complex Behavior: specify requirements for richer system behaviour.
WHILE <precondition(s)>, WHEN <trigger>,

the <system name> shall <system response>

Fig. 1. Generic EARS syntax

2 Background

2.1 Easy Approach to Requirement Syntax (EARS)

The Easy Approach to Requirement Syntax (EARS) [13,14] is a pragmatic
approach to specifying requirements for cyber-physical systems based on using
five structured templates and keywords popular in the avionics industry. Key-
words ‘WHEN’, ‘WHILE’ and ‘IF’-‘THEN’ are used in these templates and
play a major role (see Fig. 1). Studies have shown the use of EARS to reduce
requirements errors while improving requirement quality and readability [14]. For
cyber-physical real-time systems, response times are important, hence formally
budgeting the allocation of time throughout the levels of function & tempo-
ral decomposition are primary concerns. An example requirement specification
in EARS style is given: WHEN the train position reaches 10 feet, the
Train-gate-Controller SHALL trigger gate closure within 1 s.

System response and trigger are typically time constrained events. In Sect. 3
we explain how requirement specifications written in EARS can be directly mod-
eled in Event Calculus.

2.2 Basic Event Calculus (BEC)

Event Calculus (presented at length elsewhere [15]) is a formalism for reasoning
about events and change, of which there are several axiomatizations. In this
paper we use the Basic Event Calculus (BEC) formulated by [18]. There are
three fundamental, mutually related, concepts in EC: events, fluents, and time
points. An event is an action or incident that may occur in the world: for instance,
a person dropping a glass is an event. A fluent is a time-varying property of the
world, such as the altitude of a glass. A time point is an instant in time. Events
may happen at a time point; fluents have a truth value at any time point or over
an interval, and their truth values are subject to change, upon the occurrence
of an event. In addition, fluents may by associated with (continuous) physical
quantities that change over time. For example, rolling a ball on the floor can be



184 S. C. Varanasi et al.

described by two fluents: one fluent that states that the ball itself is rolling, while
another fluent captures movement of the ball in some metric unit, changing at
a certain rate, over time. The event of setting the ball to roll initiates rolling
and also determines the change in position from a starting point. Likewise, the
event of stopping the ball terminates rolling of the ball and the ball is now
stationary in its last position. An EC description consists of a domain narrative
and a universal theory. The domain narrative consists of the causal laws of the
domain, the known events, and the fluent properties, and the universal theory is
a conjunction of EC axioms that encode, for example, the commonsense laws of
inertia. In Sect. 3 we show how EC descriptions can be translated and evaluated
using an EC-reasoner implemented using s(CASP) [5].

2.3 Goal-Directed Answer Set Programming

Our framework relies on Answer Set Programming (ASP) [9] to encode system
requirements. In particular, we use the goal-directed s(CASP) [3] system. The
top-down query-driven execution strategy of s(CASP) has three major advan-
tages w.r.t. traditional ASP system: (a) it does not require to ground the pro-
grams; (b) its execution starts with a query and the evaluation only explores the
parts of the knowledge base relevant to the query. Hence relying on a strategy
not based on grounding, makes s(CASP) scalable for cyber physical domains
using dense real-valued time. Additionally, s(CASP) can output the justification
tree for issued queries and provide an easily visualizable HTML version of the
same tree. The predicates used in the modelling can be mapped to their intended
English language meanings to make the justifications more readable. These jus-
tifications make it possible to understand the behavior of the cyber-physical
system, when its properties hold and when they do not hold.

In Sect. 4 we show that the safety and liveness properties of a CPS can be
checked using s(CASP) queries. The direct mapping of EC Axioms in [5] is
possible due to s(CASP) capability to support continuous time. To the best of
our knowledge, s(CASP) is the only logic programming system that encodes EC
with dense time. This is to be distinguished from grounding-based ASP solvers
that can only reason over discretized time [12].

3 Modeling and Verifying Cyber Physical Systems in EC

The Train-Gate-Controller (TGC) is a cyber-physical system commonly used to
study modeling and verification of properties of such systems [10]. The system
consists of a set of sensors and actuators that automatically open and close
a railway gate upon detecting the arrival or departure of a train. The system
should signal gate closure in a timely fashion.

Let us consider the specifications of the Train-Gate-Controller system
described in [2]:1 The train signals its approach and exit . Events in and
1 We have made some minor (and inconsequential) changes to the Train-Gate-
Controller system to simplify the illustration.



Modeling Realtime Systems with s(CASP) 185

out signal the entry and exit of the train from the gate area. The train should
signal approach at least 2min before entering gate area. This forces the mini-
mum delay between approach and in to be 2min. The maximum delay between
approach and exit is 5min. We make the train’s approach more tangible by
considering actual movement of the train on a track. We set markers for the entry
point and exit point of the gate area. When the trains position hits these points,
then correspondingly, the train has entered or exited the gate area. Therefore,
the minimum 2min delay is ignored. Further, we consider if the gate is even-
tually closed, ignoring the 5min delay. We assume that the train changes its
position uniformly at a rate of 10 units per second. The gate area is at position
10. Once the train reaches the gate area, we consider the train being in the
gate area. Initially, the gate is open and is inclined vertically at an angle of zero
degrees. The system should signal the closing of the gate before the train is in
the gate area. The gate also uniformly changes its angle of inclination when it
is in motion. When the gate angle becomes 90◦, the gate is closed and inclined
horizontally.

3.1 Train-Gate-Controller in EARS

In this section we translate the TGC requirements into EARS notation.

R1 WHEN the train reaches a position of 10 units, the system shall signal
the train to be in the gate area

R2 WHEN the train reaches a position of 5 units, the system shall signal
lowering of the gate

R3 WHEN the gate angle reaches vertical angle of 90◦ from below, the system
shall signal gate closure

R4 WHEN the gate angle reaches a vertical angle of 0◦ from above, the system
shall signal the gate to be open

R5 WHEN the train starts leaving the gate area, the system shall signal
raising of the gate

R6 WHEN the train reaches a position of 20 units, the system shall signal
the train to be exiting the gate area

R7 The system shall ensure the gate is closed when the train is passing through
the gate area

R8 The Gate shall be open after train has exited the gate area

3.2 Train-Gate-Requirements in EC Using s(CASP)

We first identify the fluents (sensor triggered) and events (actuator triggered).
For clarity in the code below, fluent & event names have been made more descrip-
tive (e.g., in has been renamed train in).

fluent(passing). % Train is passing through the gate area
fluent(leaving). % Train is leaving form the gate area
fluent(position(X)). % Train is at some position X



186 S. C. Varanasi et al.

fluent(gate_angle(A)). % Gate is vertically inclined with an angle A
fluent(opened). % The gate is completely opened
fluent(closed). % The gate is completely closed
fluent(lowering). % The gate is being lowered
fluent(rising). % The gate is being raised
event(train_in). % The train enters the gate area
event(signal_lower). % The system signals gate lowered
event(signal_raise). % The system signals gate raised
event(gate_close). % The gate closes
event(gate_open). % The gate opens
event(train_exit). % The train exits the gate area

The causal effects of the events in the system follow straightforwardly:

initiates(train_in,passing,T).
initiates(signal_lower,lowering,T).
initiates(gate_close,closed,T).
initiates(train_exit,leaving,T).
initiates(raise,rising,T).
initiates(gate_open,opened,T).

terminates(signal_lower,opened,T).
terminates(gate_close,lowering,T).
terminates(train_exit,passing,T).
terminates(signal_raise,closed,T).
terminates(gate_open,rising,T).

Next, train_speed(S), angle_lower_rate(L), angle_rise_rate(R) denote,
respectively, that the speed of the train is S, the rate at which the gate lowers
is L and rises is R. We now describe the conditions under which various events
happen. The motion of the train itself is modeled as a trajectory. Similarly, the
change in inclination of the gate angle is also modeled as a trajectory, depending
upon whether event(signal_lower) or event(signal_raise) happen. If the
gate is lowering (rising), then the gate inclination steadily decreases (increases)2.

trajectory(started, T1, position(X), T2) :-
train_speed(S), T2 #> T1, X #= (T2 - T1) * S.

1 gate_angle_lower(A, T2) :-
2 happens(signal_lower,T),
3 angle_lower_rate(L),
4 T2 #> T,
5 A #= (T2-T1)*L.

6 gate_angle_rise(A, T2):-
7 happens(signal_raise,T),
8 angle_rise_rate(R),
9 T2 #> T,

10 A #= 90 - (T2-T1)*R.

The events mentioned previously happen when the fluents cross a certain
threshold. For example, we consider train to be in the gate area when it has
reached a position value = 10. Similarly, the system signals lower gate when
the train position crosses value = 5. All transitions in the train position, gate
angle are resolved at a sampling window of 0.1 time unit. That is, the system

2 We treat gate_angle_lower and gate_angle_rise as derived fluents. They can also
be modeled as trajectories.



Modeling Realtime Systems with s(CASP) 187

can detect changes in continuous quantities at a temporal precision of 0.1 time
unit. This is a reasonable assumption to make the system behave realistically.
If we used a temporal precision of 0, then the system can detect instantaneous
changes in continuous values, which is impossible in a real-world system. We
use the infimum on the 0.1 s interval, to signify the precise instance when the
transition of train position or gate angle crosses a threshold. Note that any
arbitrarily small (positive) value can be chosen for this temporal precision.

1 happens(train_in, T) :-
2 holdsAt(position(X1),T1),
3 holdsAt(position(X2),T2),
4 X1 #< 10, X2 #>= 10,
5 sampling_window(W),
6 T2 #< T1 + W, T2 #> T1,
7 infimum(T2, T).
8 happens(signal_lower, T) :-
9 holdsAt(position(X1),T1),

10 holdsAt(position(X2),T2),
11 X1 #< 5, X2 #>= 5,
12 sampling_window(W),
13 T2 #< T1 + W, T2 #> T1,
14 infimum(T2, T).
15 happens(gate_close, T) :-
16 gate_angle_lower(A1,T1),
17 gate_angle_lower(A2,T2),
18 A1 #< 90, A2 #>= 90,
19 sampling_window(W),
20 T2 #< T1 + W, T2 #> T1,
21 infimum(T2, T).

22 happens(gate_open, T) :-
23 gate_angle_rise(A1,T1),
24 gate_angle_rise(A2,T2),
25 A1 #> 0, A2 #=< 0,
26 sampling_window(W),
27 T2 #< T1 + W, T2 #> T1,
28 infimum(T2, T).
29 happens(signal_raise, T) :-
30 holdsAt(passing,T1),
31 holdsAt(leaving,T2),
32 sampling_window(W),
33 T2 #< T1 + W, T2 #> T1,
34 infimum(T2, T).
35 happens(train_exit, T) :-
36 holdsAt(position(X1),T1),
37 holdsAt(position(X2),T2),
38 X1 #< 20, X2 #>= 20,
39 sampling_window(W),
40 T2 #< T1 + W, T2 #> T1,
41 infimum(T2, T).

With the above modeling, we query s(CASP) to check various properties
relative to the train speed and gate angle rotations. We can also ask whether
system is safe, i.e., if when the train is passing through the gate area the gate
is open (or rising): ?- holdsAt(passing, T), holdsAt(open, T). Similarly,
we can check liveness, i.e., if the gate eventually becomes open after becoming
closed: ?- holdsAt(closed, T1) holdsAt(open, T2), T2 #> T1

Note that, we consider only a single train crossing the gate area. The system
is modeled in a way that there is a single track and the train follows the set
trajectory when approaching the gate area. As we describe in Sect. 4, if the gate
lowers too slowly, it will still be lowering when the train has crossed the gate
area. Such scenarios are easily detected in our modeling.

4 Checking Safety and Liveness of Train-Gate-Controller

We present several scenarios using the TGC to reason about the train and the
controller behavior and check whether the system satisfies desired properties.



188 S. C. Varanasi et al.

Note that, requirements R7 and R8 from EARS spec are safety and liveness
checks, respectively.

– Scenario A: (i) train speed is 1 unit per second, (ii) gate angle lower rate is
30 degrees per second and, (iii) gate angle rise rate is 40 degrees per second:
• The query, ?- happens(train_in,T) produces binding T = 11, i.e., the

train enters the gate area at time 11.
• The query, ?- happens(train_exit,T) produces the binding T = 21,
i.e., the train exits the gate area at time 21.

• The query ?- holdsAt(passing,T) yields the binding T #> 11 and
T #=< 21, i.e., it represents the interval (11, 21].

– Scenario B: (i) train speed is 1 unit per second, (ii) gate angle lower rate is
10 degrees per second and, (iii) gate angle rise rate is 40 degrees per second.

– Scenario C: (i) train speed is 1 unit per second, (ii) gate angle lower rate is 30
degrees per second and, (iii) gate angle rise rate is 10 degrees per second.

4.1 Safety and Liveness Queries

Let us check what happens when the train passes through the gate area, we can
check the safety of the system. Thus, we define what it means for the system to
be unsafe: the system is in an unsafe state if the gate is either open, lowering,
or rising when the train is passing through the gate area:

1 unsafe :- holdsAt(passing, T), holdsAt(rising, T).
2 unsafe :- holdsAt(passing, T), holdsAt(opened, T).
3 unsafe :- holdsAt(passing, T), holdsAt(lowering, T).

For the scenario A, the query ?- unsafe yields no models, therefore, the
system is safe w.r.t. the assumed parameters. However, for the scenario B, the
query ?- unsafe produces a model, meaning that the system is unsafe. Similar
to safety, we can check liveness of the system, i.e., if the gate after being closed
at the time of train passing it becomes opened before a threshold Th.

live :- holdsAt(passing,T), holdsAt(closed,T), threshold(Th),
holdsAt(opened,T1), T1 #> T, T1 #< T + Th.

In scenario C, the gate will not be open within 30 s, so if we set the liveness
threshold to 30 s, the query ?- live yields no models.

Table 1 lists the running times, in seconds, for the above queries to the
different scenarios under s(CASP). Running times to check requirements 1
through 6 of TGC are also listed. They are straightforwardly translated into
s(CASP) queries. The evaluation is run on a Quad code Intel(R) Core(TM)
i7-10510U CPU @ 1.80GHz with 8-GB RAM. In general, running the dis-
cretized versions on the CLINGO ASP system [8] takes a long time at
the grounding stage itself due to the huge size of the grounded program.
We ran the EC encodings of TGC based on F2LP/Clingo [12]. They pro-
duce no results at our timeout value of 40min. The EC modelling for TGC
can be found using this link: https://github.com/sarat-chandra-varanasi/event-
calculus-scasp/blob/main/train example/trajectory/trajectory.lp



Modeling Realtime Systems with s(CASP) 189

Table 1. Run-time (s) comparison of TGC with 3 scenarios under s(CASP).

Scenario A Scenario B Scenario C

Answer Time Answer Time Answer Time

?- holdsAt(passing, T). (11, 21] 0.241 (11, 21] 0.304 (11, 21] 0.241

?- unsafe. × 2.082 ! 1.834 × 2.156

?- live. ! 0.641 ! 0.607 × 1.972

?- req1. ! 0.245 ! 0.231 ! 0.275

?- req2. ! 0.230 ! 0.240 ! 0.245

?- req3. ! 0.259 ! 0.265 ! 0.245

?- req4. ! 0.461 ! 0.385 ! 0.441

?- req5. ! 0.265 ! 0.300 ! 0.289

?- req6. ! 0.240 ! 0.258 ! 0.249

5 Conclusion and Future Work

We have shown the ease of modeling cyber-physical systems in EC/s(CASP)
and verification of their safety and liveness properties. We intend to apply our
techniques to the Generalized Railroad crossing problem and industrial examples
handled by UPPAAL system [7]. Also, given the EC/s(CASP) description of a
cyber-physical system, one should be able to automatically derive the timed-
automata implementing the system. For instance, given the railroad crossing
system requirements specification, we should be able to synthesize the timed-
automata for the various sub-systems, thereby opening doors to generating an
implementation directly from requirement specifications that satisfies safety and
liveness constraints. This would be a step towards “correct by design” app-
roach to constructing software. In fact, one could go a step further and gener-
ate the EC/s(CASP) code directly from requirements specifications written in
EARS for cyber-physical systems, and then generate an implementation from
that EC/s(CASP) encoding. We leave these explorations for future work.

Acknowledgement. We are grateful to Brendan Hall, Jan Fiedor, and Kevin Driscoll
of Honeywell Aerospace for discussions. Authors gratefully acknowledge support from
NSF grants IIS 1718945, IIS 1910131, IIP 1916206, from Amazon Corp and US DoD,
and MICINN projects RTI2018-095390-B-C33 InEDGEMobility (MCIU/AEI/FEDER,
UE). Views expressed are authors’ own and not of the funding agencies. We also dedicate
this work to the memory of first author’s father, Late Prof. Sitaramaiah Varanasi, who
was passionate about Number Theory and ever so curious about Theoretical Computer
Science.

References

1. Alur, R.: Principles of Cyber-Physical Systems. MIT Press, Cambridge (2015)
2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),

183–235 (1994)



190 S. C. Varanasi et al.

3. Arias, J., Carro, M., Salazar, E., Marple, K., Gupta, G.: Constraint answer set
programming without grounding. In: Theory and Practice of Logic Programming,
vol. 18, no. 3–4, pp. 337–354 (2018). https://doi.org/10.1017/S1471068418000285

4. Arias, J., Chen, Z., Carro, M., Gupta, G.: Modeling and reasoning in event calculus
using goal-directed constraint answer set programming. In: Gabbrielli, M. (ed.)
LOPSTR 2019. LNCS, vol. 12042, pp. 139–155. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45260-5 9

5. Arias, J., Carro, M., Chen, Z., Gupta, G.: Modeling and reasoning in event calculus
using goal-directed constraint answer set programming. In: Theory and Practice of
Logic Programming, pp. 1–30 (2021). https://doi.org/10.1017/S1471068421000156

6. Bansal, A.: Towards next generation logic programming systems. Ph.D. thesis,
Department of Computer Science, University of Texas at Dallas (2007)

7. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9 7

8. Gebser, M., et al.: Potassco: the Potsdam answer set solving collection. AI Com-
mun. 24(2), 107–124 (2011). https://doi.org/10.3233/AIC-2011-0491

9. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming.
In: 5th International Conference on Logic Programming, pp. 1070–1080 (1988).
http://www.cse.unsw.edu.au/∼cs4415/2010/resources/stable.pdf

10. Gupta, G., Pontelli, E.: A constraint-based approach for specification and verifi-
cation of real-time systems. In: Proceedings Real-Time Systems Symposium, pp.
230–239. IEEE (1997)

11. Hall, B., et al.: Knowledge-assisted reasoning of model-augmented system require-
ments with event calculus and goal-directed answer set programming. In: Hojjat,
H., Kafle, B. (eds.) Proceedings of the 8th Workshop on Horn Clauses for Verifi-
cation and Synthesis, Virtual, Volume 344 of EPTCS, 28 March 2021, pp. 79–90
(2021). https://doi.org/10.4204/EPTCS.344.6

12. Lee, J., Palla, R.: System f2lp – computing answer sets of first-order formulas. In:
Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS (LNAI), vol. 5753, pp.
515–521. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04238-
6 51

13. Mavin, A., Wilkinson, P.: Big EARS (the return of “easy approach to require-
ments engineering”). In: 2010 18th IEEE International Requirements Engineering
Conference, pp. 277–282. IEEE (2010). https://doi.org/10.1109/RE.2010.39

14. Mavin, A., et al.: Easy approach to requirements syntax (EARS). In: 2009 17th
IEEE International Requirements Engineering Conference, pp. 317–322. IEEE
(2009). https://doi.org/10.1109/RE.2009.9

15. Mueller, E.T.: Commonsense Reasoning: An Event Calculus Based Approach. Mor-
gan Kaufmann, Waltham (2014)

16. Saeedloei, N., Gupta, G.: A logic-based modeling and verification of CPS. SIGBED
Rev. 8(2), 31–34 (2011). https://doi.org/10.1145/2000367.2000374

17. Saeedloei, N., Gupta, G.: Timed definite clause ω-grammars. In: Hermenegildo,
M.V., Schaub, T. (eds.) Technical Communications of the 26th International Con-
ference on Logic Programming, ICLP 2010, Volume 7 of LIPIcs, Edinburgh, Scot-
land, UK, 16–19 July 2010, pp. 212–221 (2010)

18. Shanahan, M.: The event calculus explained. In: Wooldridge, M.J., Veloso, M.
(eds.) Artificial Intelligence Today. LNCS (LNAI), vol. 1600, pp. 409–430. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48317-9 17


