
Modeling Administrative Discretion Using
Goal-Directed Answer Set Programming ?

Joaqúın Arias1[0000−0003−4148−311X], Mar Moreno-Rebato1[0000−0002−4177−9239],
Jose A. Rodriguez-Garćıa1[0000−0002−6362−9880], and Sascha

Ossowski1[0000−0003−2483−9508]

CETINIA, Universidad Rey Juan Carlos, Madrid, Spain

Abstract. Automated legal reasoning and its application in smart
contract is getting interest. In this context, ethical and legal
concerns make it necessary for automated reasoners to justify in
human-understandable terms the advice given. Logic Programming,
specially Answer Set Programming, has a rich semantics and has been
used to very concisely express complex knowledge. However, modelling
vague concepts such as ambiguity and discretion cannot be expressed in
top-down execution models based on Prolog, and in bottom-up execution
models based on ASP the justifications are incomplete and/or not
scalable. We propose to use s(CASP), a top-down execution model for
predicate ASP, to model ambiguity and discretion following a set of
patterns. We have implemented a framework, called s(LAW), to model,
reason, and justify the applicable legislation and validate it by translating
(and benchmarking) the criteria for the admission of students in public
centers established by the “Comunidad de Madrid”.

Keywords: Answer Set Programming · Goal-Directed · Ambiguity ·
Administrative Discretion.

1 Introduction

The formal representation of a legal text to automatize reasoning about them
is well known in literature. For deterministic rules there are several proposals,
often based on logic-based programming languages [12,14].

This topic is recently gaining much attention thanks to the interest
in the so-called smart contracts, and to autonomous decisions by public
administrations [10,3,15]. A smart contract is a program that represents the legal
terms of a contract and is deployed on a block-chain platform to automatically
execute, control and document the events described in the contract.

However, none of the existing proposals are able to represent the ambiguity
and/or administrative discretion present in contracts and/or applicable
legislation, e.g., force majeure. Force majeure is a law term that must be
understood as referring to abnormal and unforeseeable circumstances which were
outside the control of the party by whom it is pleaded and the consequences of
which could not have been avoided in spite of the exercise of all due care (see

? This work has been partially supported by the Spanish Ministry of Science,
Innovation and Universities, co-funded by EU FEDER Funds, through project grant
InEDGEMobility RTI2018-095390-B-C33 (MCIU/AEI/FEDER, UE).

2 J. Arias et al.

judgment Court of Justice of European Union, case Tomas Vilkas, C-640/15, 25
January 2017). In the procedure for awarding school places in centers supported
with public funds in the “Comunidad de Madrid” (CM), in Spain, the proximity
of a school to a family’s home or work address plays an important role. This
proximity is determined based on existing educational districts, except in cases
of force majeure, but these cases are not defined a priory.

In this work we present a framework, called s(LAW), that allows for
modeling legal rules involving ambiguity, and supports reasoning and inferring
conclusions based on them. Additionally, thanks to the goal-directed execution
of s(CASP), the underlying system used to implement our proposal, s(LAW)
provides justification of the resulting conclusions (in natural language).

To evaluate the expressiveness of our proposal we have translated the
procedure for awarding school places for the “Educación Secundaria Obligatoria”
(ESO) of centers supported with public funds in the CM. The Spanish Organic
Law on Education1 regulates, in article 84, the criteria for the admission of
students in public centers and private subsidized centers and, in its second
paragraph of this article 84, indicates adjudication criteria. However, since Spain
is a politically decentralized country, it is the autonomous communities (and,
therefore, their educational administrations) that have powers to develop these
aspects of basic state legislation. The CM, in use of its powers in educational
matters, establishes the framework and general procedure for the admission of
students to educational centers supported with public funds for the ESO.2 The
case presented in this paper is, therefore, a real case, based on the regulations
currently in force in the CM.

2 Goal-Directed Answer Set Programming

Our proposal relies on Answer Set Programming (ASP) [7] for coding
contracts and legal rules. More specifically, we use s(CASP)[1], a goal-directed
implementation of ASP that features predicates, constraints among non-ground
variables, and uninterpreted functions.

The top-down query-driven execution strategy of s(CASP) has three major
advantages w.r.t. traditional ASP system: (a) it does not require to ground the
programs; (b) its execution starts with a query and the evaluation only explores
the parts of the knowledge base relevant to the query; and (c) s(CASP) returns
partial stable models (the relevant subsets of the ASP stable models needed
to support the query) and their corresponding justification (proof tree). Thus,

1 Organic Law 2/2006, May 3, last modified by Organic Law 3/2020, December 29
2 Decree 29/2013, of April 11, modified by Decree 11/2019, of March 5, of the

Governing Council, on freedom of choice respecting school centers; Order 1240/2013,
of April 17, of the Department of Education, Youth and Sports of Community of
Madrid, modified by Order 1534/2019, of May 17, of the Department of Education
and Research Community of Madrid; Resolution of July 31, 2013, of the General
Directorate for the Improvement of the Quality of Education (regarding bilingual
education); and Joint Resolution of the Deputy Department of Educational Policy
and Educational Organization, of February 18, 2021 (https://bit.ly/3dAX22d).

https://bit.ly/3dAX22d

Modeling Administrative Discretion Using s(LAW) 3

our proposal automates commonsense reasoning and is scalable whereas ground
based ASP systems do not (Section 5).

Additionally, s(CASP) provides a mechanism to present justifications in
natural language using a generic translation, and the possibility of customizing
them with directives that provide explanation patterns in natural language. Both
plain text and user-friendly, expandable HTML can be generated. These patterns
can be used with the program text itself, thereby making it easier for experts
without a programming background to understand both the program and the
results, i.e., partial model and justification, of its execution.

3 Administrative and judicial discretion reasoner

This work makes two main contributions: (i) a set of patterns to translate legal
rules into ASP, and natural language patterns to generate readable justifications;
(ii) a framework to model, reason, and justify conclusions based on the evidence
provided by the user and the applicable legislation, representing ambiguity,
discretion and/or incomplete information (key concepts in legal cases).

3.1 Patterns to translate law into ASP

The translation of legal rules into logic predicates has been considered a
straightforward task for many years. However, the translation of ambiguity
and/or discretion concepts required the help of an expert in law and/or in the
field of application, in order to specify only one interpretation and/or decision.

Let us use the encoding of the procedure for the adjudication of schools places
in the CM (Fig. 1) to explain the following patterns:

Requirement For Applying These are the most common constructions in
legal articles. There are two patterns:

– Disjunction of requirements, e.g., “s/he obtains a school place if one of the
following common requirements are met”. Which is translated by separating
each requirement in different clauses, see Fig. 1 lines 9, 12, and 19:

– Conjunction of requirements, e.g., “In addition, some of the specific
requirements must be met”. Which is translated to a single clause where
the comma ',' means and, see Fig. 1 lines 5-7:

Exceptions For Applying As we mentioned before, a legal article is a default
rule subject to possible exceptions. In s(CASP) the exceptions can be encoded
using negation as failure. For example, Fig. 1 lines 2-4 shows the translation of
“It will be possible to obtain a school place if the requirement is met and there
is no exception” and then, the compiler of s(CASP) would generate its dual, i.e.,
not exception, by collecting and checking that no exceptions hold:

1 not exception :- not exception_1, . . ., not exception_n.

where not exception_i is a new predicate name that identified the dual of
the ith exception. For the sake of brevity let us omit the explanation of how
the compiler generates the dual for each exception (see [9,1] for details). Fig. 1
lines 46-57 shows the translation of the unique exception defined in our running

4 J. Arias et al.

1 %% Obtain a school place if...

2 obtain_place :-

3 met_requirement,

4 not exception.

5 met_requirement :-

6 met_common_requirement,

7 met_specific_requirement.

8 %% Common requirements:

9 met_common_requirement :-

10 large_family.

11

12 met_common_requirement :-

13 recipient_social_benefits.

14 recipient_social_benefits :-

15 renta_minima_insercion.

16 recipient_social_benefits :-

17 ingreso_minimo_vital.

18

19 met_common_requirement :-

20 disability_status.

21 disability_status :-

22 disabled_parent.

23 disability_status :-

24 disabled_sibling.

25 %% Specific requirements:

26 met_specific_requirement :-

27 sibling_enroll_center.

28 met_specific_requirement :-

29 legal_guardian_work_center.

30

31 met_specific_requirement :-

32 relative_former_student.

33

34 met_specific_requirement :-

35 school_proximity.

36 school_proximity :-

37 same_education_district.

38 school_proximity :-

39 not same_education_district,

40 force_majeure. % Ambiguity

41 force_majeure :-

42 not n_force_majeure.

43 n_force_majeure :-

44 not force_majeure.

45 %% Exceptions:

46 exception :-

47 come_non_bilingual,

48 want_bilingual_section(Course),

49 not accredit_english_level(Course).

50 accredit_english_level('1st ESO') :-

51 b1_certificate.

52 accredit_english_level('2nd ESO') :-

53 b1_certificate.

54 accredit_english_level('3rd ESO') :-

55 b2_certificate.

56 accredit_english_level('4th ESO') :-

57 b2_certificate.

58 %% Discretion To Act:

59 obtain_place :-

60 not met_requirement,

61 met_complementary_criterion(CC).

62 obtain_place :-

63 met_requirement, exception,

64 met_complementary_criterion(CC).

65

66 met_complementary_criterion(CC) :-

67 school_criteria(CC),

68 purpose(CC), not unlawful(CC),

69 not n_met_complementary_criterion(CC).

70 n_nmet_complementary_criterion(CC) :-

71 not met_complementary_criterion(CC).

72 purpose(CC) :-

73 promote_diversity(CC).

74 unlawful(CC) :-

75 sex_discrimination(CC).

76 unlawful(CC) :-

77 race_discrimination(CC).

78 unlawful(CC) :-

79 religion_discrimination(CC).

80

81 school_criteria(foreign_student) :-

82 foreign_student.

83 school_criteria(specific_etnia) :-

84 specific_etnia.

85

86 promote_diversity(foreign_student).

87 promote_diversity(specific_etnia).

88 race_discrimination(specific_etnia).

Fig. 1: Translation of the procedure for awarding school places under s(LAW).

Modeling Administrative Discretion Using s(LAW) 5

example: “Students coming from non-bilingual public schools, who apply for a
place in English language bilingual schools and who wish to study in the Bilingual
Section, need to accredit a level of English in the four skills equivalent to level
B1 for 1st/2nd ESO, and to level B2 for 3rd/4th ESO”.

Ambiguity Ambiguity occurs when some aspects of the law can be interpreted
in different ways. For example, “proximity to the family or work address” is
a specific and defined requirement based on the distribution by educational
districts. However, in case of force majeure, students from a education district
may be reassigned to a school from another district. Fig. 1 lines 34-44 encode
this scenario allowing evaluation without having to determine a priori the force
majeure circumstances necessary to justify the reassignment of students. This
pattern generates a model where force_majeure is assumed to hold and another
model where there is no evidence that force_majeure holds.

Discretion To Act The discretion to act introduces different possible
interpretations of the law and/or the contract that we intent to model by
generating multiple models. Implementations based on Prolog compute a single,
canonical model, and therefore, bypass this non determinism by selecting one
interpretation. The discretion to act can be considered as a ground or an
exception following the previous patterns. For example, Fig. 1 lines 59-79 shows
the translation of the discretion to act rule: “The School Council may add
another complementary criterion”. The resulting encoding uses predicates in
which the variable CC can be instantiated with different values. This feature
allows us to reuse some of the clauses without repeating them, i.e., the clauses
in lines 59-79 are generic, while clauses 81-88 specify the ground and exceptions
of the criteria added by a particular school. Clauses in lines 66-71 generate two
possible models if the discretion to act is exercised according to the purpose /
intention of the law and it is not unlawful. In one model the complementary
criterion is applied and in the other it does not. Then, clauses in lines 86-88
state the cases in which the discretion to act has a purpose and/or is unlawful.

Unknown Information The use of default negation may introduce unexpected
results in the absence of information (positive and/or negative). Therefore, in
many cases the desirable behavior should capture the absence of information by
generating different models depending on the relevant information. For example,
it may be unclear whether the documents we have to certify that we are a
large_family are valid or not, so we avoid introducing that information and the
reasoner would reason assuming both scenarios. To state that some information is
certain we would use the predicate evidence/1, e.g., evidence(large_family)
means that s/he has the condition of large family. Additionally, s(LAW) would
provide strong negation, denoted with '-', to specify that we have evidences
supporting the falsehood of some information, e.g., -evidence(large_family)
means that s/he does not have the condition of large family.

3.2 Description of s(LAW)

s(LAW), built on top of s(CASP), is composed by three modules: the first
contains the articles, the second contains explanations to generate readable
justifications, and the third one contains the evidences. In our running example:

6 J. Arias et al.

1 s/he may obtain a school place, because

2 a common requirement is met, because

3 s/he is part of a large family.

4 a specific requirement is met, because

5 s/he has siblings enrolled in the center.

6 there is no evidence that an exception applies, because

7 s/he came from a non-bilingual public school, and

8 s/he wish to study 2nd ESO in the Bilingual Section, and

9 s/he accredit required level of English for 2nd ESO, because

10 in the four skills certificate level b1.

Fig. 3: Justification in Natural Language for the evaluation of student01.pl.

ArticleESO.pl Contains the legislation rules in Fig. 1 following the patterns
described in Section 3.1.

ArticleESO.pre.pl Contains the natural language patterns for the predicates
that are relevant to provide readable justifications of the conclusions inferred by
s(LAW). The directive #pred defines the natural language patterns, e.g.:

1 #pred obtain_place :: 's/he may obtain a school place'.

Additionally, to facilitate the understanding of the code we can obtain a
readable code (in natural language) by invoking scasp --code --human.

1 #include('ArticleESO.pl').
2 #include('ArticleESO.pred.pl').
3

4 come_non_bilingual.

5 want_bilingual_section('2nd ESO').
6

7 evidence(large_family).

8 evidence(renta_minima_insercion).

9 evidence(sibling_enroll_center).

10 evidence(same_education_district).

11 evidence(b1_certificate).

12 -evidence(foreign_student).

13 -evidence(specific_etnia).

Fig. 2: File student01.pl.

StudentXX.pl Fig. 2 shows the encoding
of the module student01.pl corresponding
to one student. This last module encodes
the evidences of a student and links them
with the previous modules ArticleESO.pl

and ArticleESO.pred.pl (lines 1-2). The
predicates evidences/1 and -evidence/1

(explained in Section 3.1) are used to specify
the known information (positive or negative
evidences). For the sake of brevity, let us handle
as unknown the evidences corresponding to:
large_family, renta_minima_insercion,
sibling_enroll_center,
same_education_district, b1_certificate,
foreign_student, and specific_etnia.
Fig. 2 lines 7-13 provide the known information
corresponding to this student. Additionally, we consider that the students,
coming from non-bilingual public schools, apply for a place in English language
bilingual schools and wish to study in the Bilingual Section (Fig. 2 lines 4-5).

4 Reasoning and Deduction with Real Use-Cases

The modules of s(LAW) are implemented under s(CASP) version 0.21.04.04
(https://gitlab.software.imdea.org/ciao-lang/sCASP), that runs under Ciao

https://gitlab.software.imdea.org/ciao-lang/sCASP

Modeling Administrative Discretion Using s(LAW) 7

Table 1: Case of different students evaluated using s(LAW).
Note: ‘+’ is a positive evidence, ‘−’ is a negative evidence, ‘?’ means unkown.

st 1 st 2 st 3 st 4 st 5 st 6

large_family + + + − − −
renta_minima_insercion + + + ? − −

sibling_enroll_center + + − + − −
same_education_district + + − + − −

b1_certificate + − + ? − −

foreign_student − − − − + −
specific_etnia − − − − − +

?- obtain_place yes no yes yes yes no

Prolog version 1.19-480. (http://ciao-lang.org/). The benchmarks used in this
section are available at http://platon.etsii.urjc.es/∼jarias/papers/slaw-caepia21
and were run on a MacOS 11.2.3 laptop with an Intel Core i7 at 2.6 GHz.

A priori Deduction: Consider we run our reasoner s(LAW) in the interactive
mode to reason about six different students by invoking:

1 scasp -i --tree --human --short studentXX.pl

where XX corresponds to the ‘id’ of each student (from 1 to 6). Then, we ask
the queries to obtain conclusions from the reasoner. Table 1 shows the data
corresponding to the candidates and the conclusion generated by s(LAW) for
the query ?- obtain_place. Students 1, 3, 4, and 5 obtain a place at the school
while students 2 and 6 do not.

– Student 1: Fig. 2 contains the information corresponding to this student.
Since s/he meets common and specific requirements and avoids the exception
(having level b1 in English), the evaluation returns the partial model:

{ obtain_place, large_family, sibling_enroll_center, come_non_bilingual,

want_bilingual_section(2nd ESO), b1_certificate }

and the corresponding justification shown in Fig. 3.
– Student 2: meets common and specific requirements but has to be rejected

because s/he does not accredit level b1 in English.
– Student 3: meets common requirements, avoids the exception and by

assuming force_majeure s/he also meets a specific requirement (school
proximity). Note that s/he does not live in the same education district.

– Student 4: in this use-case there is absence of information regarding the
“renta minima de insercion” and the English certificate (marked with ?).
The partial model returned assumes that the truth values for these pieces
of information are true. Therefore, based on that assumption the student
would obtain a place.

http://ciao-lang.org/
http://platon.etsii.urjc.es/~jarias/papers/slaw-caepia21

8 J. Arias et al.

1 there is no evidence that s/he may obtain a school place, because

2 there is no evidence that a common requirement is met, because

3 there is no evidence that s/he is part of a large family, and

4 there is no evidence that s/he is a recipient of the RMI, and

5 there is no evidence that a parent or sibling has disability status.

6 there is no evidence that the criterion foreign_student is met, because

7 there is no evidence that s/he meets the criteria foreign_student, because

8 there is no evidence that s/he is a foreign student.

9 there is no evidence that the criterion specific_etnia is met, because

10 s/he meets the criteria specific_etnia, because

11 s/he belongs to a specific etnia.

12 specific_etnia follows the purpose of the procedure, because

13 specific_etnia promotes the diversity.

14 specific_etnia is illegal, because

15 specific_etnia discriminates based on race.

Fig. 4: Justification in Natural Language for the evaluation of student06.pl.

– Student 5: now we consider that the school added a complementary criterion
for foreign students and therefore, since the student is a foreigner, s/he
obtains a place.

– Student 6: in this use-case the complementary criterion specific_etnia

cannot be applied because it discriminates by race and therefore, it is
unlawful. Therefore, the student does not obtain a place.

A posteriori Deduction The main advantage of s(LAW) is its ability to
generate justifications not only for positive but also for negative information.
This ability allows us to analyze the reason for a specific inference and/or to
determine which are the requirements needed to obtain a specific conclusion:

– For student 3, the query ?- not force_majeure, obtain_place avoids the
assumption of force majeure and the student does not obtain a place.

– For student 4, the query ?- not obtain_place returns the partial models
(with the assumptions) for which this student does not obtain a place.

– For student 6, Fig. 4 shows the justification of the query
?- not obtain_place so we can analyze more in detail why this
student is rejected. While the complementary criteria for student 5
(foreign_student) is similar to specific_etnia, the justification tree
shows that this student does not obtain a place because the complementary
criterion is illegal (Fig. 4 lines 14-15).

Additionally, we can collect the partial models, in which the school place
is or is not obtained, together with their justification and analyze “Epistemic
Specifications” [6], that is, what is true in all/some models, which partial models
share certain assumptions, etc. This reasoning makes it possible to detect the
missing information that would change the decision from “not obtained” (or
“obtained” under some assumptions) to “obtained”. Note that, by introducing
the new evidences, the resulting justification of s(LAW) provides an explanation
in which these evidences are used to support the decision.

Modeling Administrative Discretion Using s(LAW) 9

5 Related Work

Most ASP systems follow bottom-up executions that require a grounding phase
where the variables of the program are replaced with their possible values.
During the grounding phase, links between variables are lost and therefore an
explanation framework for these systems must face many challenges to provide
a concise justification of why a specific answer set satisfies the rules (and which
rules). The most relevant approaches are: off-line and on-line justifications [11];
Causal Graph Justification [2]; and Labeled ABA-Based Answer Set Justification
(LABAS) [13]. However, these approaches are applied to grounded versions of
the programs, i.e., non-ground programs have to be grounded, and they may
produce unwieldy justifications when the non-ground program has uninterpreted
functions, consults large databases and/or requires the representation of dense
domains [1].

On the other hand, systems that follow a top-down execution can trace
which rules have been used to obtain the answers more easily. One such
system is ErgoAI (https://coherentknowledge.com), based on XSB [16], that
generates justification trees for programs with variables. ErgoAI has been
applied to analyze streams of financial regulatory and policy compliance in
near real-time providing explanations in English that are fully detailed and
interactively navigable. However, default negation in ErgoAI is based on the
well-founded semantics [5] and therefore ErgoAI is not a framework that allows
the representation of ambiguity and/or administrative discretion.

Finally, we would like to emphasize that explainable AI techniques for
black-box AI tools, most of them based on machine learning, are not able to
explain how variation in the input data changes the resulting decision [4].

6 Conclusions

In this paper we have shown that using goal-directed answer set programming,
s(LAW) is capable of modeling discretion and ambiguity. The deduction based
on s(LAW) allows: the consideration of different conclusions (multiple models)
which can be analyzed by humans thanks to the justification generated in natural
language; and the reasoning about the set of these conclusions/models. To the
best of our knowledge, s(LAW) is the only system that exhibits the property of
modelling vague concepts.3

Our future work unfolds among two major lines. The first is to complete
the modeling of the legislation by tabulation for each of the criteria used in
the procedure for adjudication of school places in centers supported with public
funds. And, second, the use of this tabulation of criteria to check (by employing
the underlying constraint solver of s(SCASP)) whether automated decisions can
be made when the regulation includes ambiguity, administrative discretion and
unknown information.

3 On January 14th, 2021, Dr. Robert Kowalski explained how they bypassed in [14] the
representation of vague concepts such as without undue delay [8, 1:20:15, 1:26:00].

https://coherentknowledge.com

10 J. Arias et al.

References

1. Arias, J., Carro, M., Salazar, E., Marple, K., Gupta, G.: Constraint Answer Set
Programming without Grounding. Theory and Practice of Logic Programming
18(3-4), 337–354 (2018). https://doi.org/10.1017/S1471068418000285

2. Cabalar, P., Fandinno, J., Fink, M.: Causal Graph Justifications of Logic
Programs. Theory and Practice of Logic Programming 14(4-5), 603–618 (2014).
https://doi.org/10.1017/S1471068414000234

3. Cobbe, J.: Administrative law and the machines of government: judicial review of
automated public-sector decision-making. Legal Studies 39(4), 636–655 (2019)

4. DARPA: Explainable Artificial Intelligence (XAI). Defense Advanced
Research Projects Agency (2017), https://www.darpa.mil/program/
explainable-artificial-intelligence

5. Gelder, A.V., Ross, K., Schlipf, J.: The Well-Founded Semantics for
General Logic Programs. Journal of the ACM 38, 620–650 (1991).
https://doi.org/10.1145/116825.116838

6. Gelfond, M.: Logic programming and reasoning with incomplete information.
Annals of mathematics and artificial intelligence 12(1), 89–116 (1994)

7. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming.
In: 5th International Conference on Logic Programming. pp. 1070–1080 (1988),
http://www.cse.unsw.edu.au/∼cs4415/2010/resources/stable.pdf

8. Kowalski, R.A.: Logical English = Logic + English + Compupting. https:
//utdallas.app.box.com/s/ngsyloscj5sk24uh3axexxz451o74z0u (January 2021),
HackReason Opening Ceremony. Last accessed 19 April 2021

9. Marple, K., Salazar, E., Gupta, G.: Computing Stable Models of Normal Logic
Programs Without Grounding. arXiv 1709.00501 (2017), http://arxiv.org/abs/
1709.00501

10. Cerrillo i Mart́ınez, A.: El derecho para una inteligencia artificial centrada en el
ser humano y al servicio de las instituciones: Presentación del monográfico. IDP:
Revista de Internet, Derecho y Politica (30) (2019)

11. Pontelli, E., Son, T.C., El-Khatib, O.: Justifications for Logic Programs under
Answer Set Semantics. Theory and Practice of Logic Programming 9(1), 1–56
(2009). https://doi.org/10.1017/S1471068408003633

12. Ramakrishna, S., Górski, L., Paschke, A.: A dialogue between a lawyer and
computer scientist: the evaluation of knowledge transformation from legal text
to computer-readable format. Applied Artificial Intelligence 30(3), 216–232 (2016)

13. Schulz, C., Toni, F.: Justifying Answer Sets Using Argumentation.
Theory and Practice of Logic Programming 16(1), 59–110 (2016).
https://doi.org/10.1017/S1471068414000702

14. Sergot, M.J., Sadri, F., Kowalski, R.A., Kriwaczek, F., Hammond, P., Cory, H.T.:
The british nationality act as a logic program. Communications of the ACM 29(5),
370–386 (1986)

15. Solé, J.P.: Inteligencia artificial, derecho administrativo y reserva de humanidad:
algoritmos y procedimiento administrativo debido tecnológico. Revista general de
Derecho administrativo 50 (2019)

16. Swift, T., Warren, D.S.: XSB: Extending Prolog with Tabled Logic Programming.
Theory and Practice of Logic Programming 12(1-2), 157–187 (Jan 2012).
https://doi.org/10.1017/S1471068411000500

https://doi.org/10.1017/S1471068418000285
https://doi.org/10.1017/S1471068414000234
https://www.darpa.mil/program/explainable-artificial-intelligence
https://www.darpa.mil/program/explainable-artificial-intelligence
https://doi.org/10.1145/116825.116838
http://www.cse.unsw.edu.au/~cs4415/2010/resources/stable.pdf
https://utdallas.app.box.com/s/ngsyloscj5sk24uh3axexxz451o74z0u
https://utdallas.app.box.com/s/ngsyloscj5sk24uh3axexxz451o74z0u
http://arxiv.org/abs/1709.00501
http://arxiv.org/abs/1709.00501
https://doi.org/10.1017/S1471068408003633
https://doi.org/10.1017/S1471068414000702
https://doi.org/10.1017/S1471068411000500

	Modeling Administrative Discretion Using Goal-Directed Answer Set Programming

