
Razonamiento juŕıdico informatizado con s(LAW)
y otras ĺıneas de investigación de CETINIA

Sascha Ossowski and Joaqúın Arias

Grupo de Inteligencia Artificial de la URJC
Center for Intelligent Information Technologies (CETINIA)

Móstoles, Madrid

1 Diciembre 2023 (JornadasIA’23)

www.urjc.es

Who I am

Joaqúın Arias
Professor at Universidad
Rey Juan Carlos (URJC).

• 2020 - today: Researcher at Group of IA at CETINIA, URJC.

• 2013 - 2020: Researcher at IMDEA Sotware Institute.

• Academic background:

• Ph.D. in Computer Science (2020).
• M.Sc. in Software and Systems (2015).
• B.Sc. in Mathematics and informatic (2014).
• M.Arch. in Architecture (2002).

• PhD Thesis: “Advanced Evaluation Techniques for
(Non)-Monotonic Reasoning using Rules with Constraints”.

URJC | Centre for Intelligent Information Technologies 1/41

http://www.urjc.es
https://oa.upm.es/58189/
https://oa.upm.es/58189/

www.urjc.es

Commonsense Reasoning: Introduction
• Humans employ commonsense reasoning to explain things:

• E.g., we convert sensory input to knowledge, over which we reason.

• To automate explainability/interpretability in AI: automate the system 2 reflective
thinking, i.e., automate commonsense reasoning. “Thinking Fast and Slow” (2011)

Commonsense reasoning can be approximated with answer set programming

Default rules, integrity constraints, and assumption-based reasoning

• Default Rules: express what is true in a majority of cases but not always. E.g.,
“by default birds fly, but there are exceptional ones that do not”.
flies(X):- bird(X), not ab0(X). ab0(X):- penguin(X).

• Integrity Constraints: express impossibility conditions. E.g., A person cannot sit
and stand at the same time. false :- sit(X), stand(X).

• Assumption based reasoning: if we don’t know something, we will assume it
holds (or does not hold) and continue (abductive reasoning). E.g., Game of clue.

URJC | Centre for Intelligent Information Technologies 2/41

http://www.urjc.es

www.urjc.es

Commonsense Reasoning: Introduction
• Humans employ commonsense reasoning to explain things:

• E.g., we convert sensory input to knowledge, over which we reason.

• To automate explainability/interpretability in AI: automate the system 2 reflective
thinking, i.e., automate commonsense reasoning. “Thinking Fast and Slow” (2011)

Commonsense reasoning can be approximated with answer set programming

Default rules, integrity constraints, and assumption-based reasoning

• Default Rules: express what is true in a majority of cases but not always. E.g.,
“by default birds fly, but there are exceptional ones that do not”.
flies(X):- bird(X), not ab0(X). ab0(X):- penguin(X).

• Integrity Constraints: express impossibility conditions. E.g., A person cannot sit
and stand at the same time. false :- sit(X), stand(X).

• Assumption based reasoning: if we don’t know something, we will assume it
holds (or does not hold) and continue (abductive reasoning). E.g., Game of clue.

URJC | Centre for Intelligent Information Technologies 2/41

http://www.urjc.es

www.urjc.es

Commonsense Reasoning: Introduction
• Humans employ commonsense reasoning to explain things:

• E.g., we convert sensory input to knowledge, over which we reason.

• To automate explainability/interpretability in AI: automate the system 2 reflective
thinking, i.e., automate commonsense reasoning. “Thinking Fast and Slow” (2011)

Commonsense reasoning can be approximated with answer set programming

Default rules, integrity constraints, and assumption-based reasoning

• Default Rules: express what is true in a majority of cases but not always. E.g.,
“by default birds fly, but there are exceptional ones that do not”.
flies(X):- bird(X), not ab0(X). ab0(X):- penguin(X).

• Integrity Constraints: express impossibility conditions. E.g., A person cannot sit
and stand at the same time. false :- sit(X), stand(X).

• Assumption based reasoning: if we don’t know something, we will assume it
holds (or does not hold) and continue (abductive reasoning). E.g., Game of clue.

URJC | Centre for Intelligent Information Technologies 2/41

http://www.urjc.es

www.urjc.es

Commonsense Reasoning: Introduction
• Humans employ commonsense reasoning to explain things:

• E.g., we convert sensory input to knowledge, over which we reason.

• To automate explainability/interpretability in AI: automate the system 2 reflective
thinking, i.e., automate commonsense reasoning. “Thinking Fast and Slow” (2011)

Commonsense reasoning can be approximated with answer set programming

Default rules, integrity constraints, and assumption-based reasoning

• Default Rules: express what is true in a majority of cases but not always. E.g.,
“by default birds fly, but there are exceptional ones that do not”.
flies(X):- bird(X), not ab0(X). ab0(X):- penguin(X).

• Integrity Constraints: express impossibility conditions. E.g., A person cannot sit
and stand at the same time. false :- sit(X), stand(X).

• Assumption based reasoning: if we don’t know something, we will assume it
holds (or does not hold) and continue (abductive reasoning). E.g., Game of clue.

URJC | Centre for Intelligent Information Technologies 2/41

http://www.urjc.es

www.urjc.es

Commonsense Reasoning: Introduction
• Humans employ commonsense reasoning to explain things:

• E.g., we convert sensory input to knowledge, over which we reason.

• To automate explainability/interpretability in AI: automate the system 2 reflective
thinking, i.e., automate commonsense reasoning. “Thinking Fast and Slow” (2011)

Commonsense reasoning can be approximated with answer set programming

Default rules, integrity constraints, and assumption-based reasoning

• Default Rules: express what is true in a majority of cases but not always. E.g.,
“by default birds fly, but there are exceptional ones that do not”.
flies(X):- bird(X), not ab0(X). ab0(X):- penguin(X).

• Integrity Constraints: express impossibility conditions. E.g., A person cannot sit
and stand at the same time. false :- sit(X), stand(X).

• Assumption based reasoning: if we don’t know something, we will assume it
holds (or does not hold) and continue (abductive reasoning). E.g., Game of clue.

URJC | Centre for Intelligent Information Technologies 2/41

http://www.urjc.es

www.urjc.es

Commonsense Reasoning: Event Calculus

Commonsense Reasoning (CR)
• Requires modelling:

• Non-monotonicity.
• Continuous characteristics of the world.

• Event Calculus (EC): formalism that represents
continuous change and captures law of inertia.

• EC components:

Narrative A description of the world we want to
model. Assumes circumscription.

Axioms A generic description of how the world
behaves given a narrative.

• Implementing EC: logic + continuous domains.

Example:

A tap fills a vessel [37].

URJC | Centre for Intelligent Information Technologies 3/41

http://www.urjc.es

www.urjc.es

Commonsense Reasoning: Event Calculus (cont.)

Reasoning on EC:
• Deduction / proving in first order logic (+ circumscription).

Related Work
• Non-interactive theorem prover: likely won’t always answer.

• Prolog: incomplete implementations [12; 30; 38].

• Answer Set Programming (ASP): logic programming paradigm.

• Has been used to model (discrete) EC [23; 24].

• Classical (C)ASP systems require grounding:

• Limited to variables ranging over discrete, finite domains.

• CASP proposals not applied (yet) to modeling EC:

• ASPMT [22]: Action languages [17] + continuous time.
• PDDL+ [6; 14]: Planning & Diagnosis.

URJC | Centre for Intelligent Information Technologies 4/41

http://www.urjc.es

www.urjc.es

Commonsense Reasoning: Event Calculus under s(CASP)

• Goal directed execution without grounding.

• The execution starts with a query. ?- T #> 5, T #< 8, cross(T).
• Returns partial stable models [16] Only literals supporting the query.
• For each successful top-down derivation, on backtracking returns:

• A justification tree. Explanation for observations.
• Bindings for the free variables. T=6.
• Constraint representing refined domain of the variables. T #> 5, T #< 7.

• Provides a constructive and sound negation:

• Default negation: In the absence of information. cross(T):- not train(T).
• Classical negation: Explicit knowledge. cross(T):- -train(T).

• Allows rules with negated heads. -train(T):- not barrier(up,T).

• Global constraints ensure consistency. :- train(T), -train(T).

URJC | Centre for Intelligent Information Technologies 5/41

http://www.urjc.es

www.urjc.es

Commonsense Reasoning: Event Calculus under s(CASP)

• Goal directed execution without grounding.

• The execution starts with a query. ?- T #> 5, T #< 8, cross(T).
• Returns partial stable models [16] Only literals supporting the query.
• For each successful top-down derivation, on backtracking returns:

• A justification tree. Explanation for observations.
• Bindings for the free variables. T=6.
• Constraint representing refined domain of the variables. T #> 5, T #< 7.

• Provides a constructive and sound negation:

• Default negation: In the absence of information. cross(T):- not train(T).
• Classical negation: Explicit knowledge. cross(T):- -train(T).

• Allows rules with negated heads. -train(T):- not barrier(up,T).

• Global constraints ensure consistency. :- train(T), -train(T).

URJC | Centre for Intelligent Information Technologies 5/41

http://www.urjc.es

www.urjc.es

Commonsense Reasoning: Event Calculus under s(CASP)

• Goal directed execution without grounding.

• The execution starts with a query. ?- T #> 5, T #< 8, cross(T).
• Returns partial stable models [16] Only literals supporting the query.
• For each successful top-down derivation, on backtracking returns:

• A justification tree. Explanation for observations.
• Bindings for the free variables. T=6.
• Constraint representing refined domain of the variables. T #> 5, T #< 7.

• Provides a constructive and sound negation:

• Default negation: In the absence of information. cross(T):- not train(T).
• Classical negation: Explicit knowledge. cross(T):- -train(T).

• Allows rules with negated heads. -train(T):- not barrier(up,T).

• Global constraints ensure consistency. :- train(T), -train(T).

URJC | Centre for Intelligent Information Technologies 5/41

http://www.urjc.es

www.urjc.es

Commonsense Reasoning: Event Calculus under s(CASP) (cont.)

• EC uses a universal theory (axioms) to reason about scenarios (narrative).

• Event are actions that may happens at a time point. tapOn Open the tap.
• A fluent is a time-varying property of the world. filling The vessel is been filled.
• Time and/or fluent may have continuous quantities. level(X) Level of water.

• State constraints: represent restrictions on the model:

• To ensure consistency of the narrative w.r.t. the axioms.
:- holds(F,T), -holds(F,T).

• Trajectory: a fluent depends on the time elapsed since an event:

• If at T1 the level of water is L1. Then, at T2 the level is L1+T2-T1.

• Non-monotonic reasoning

• Different scenarios/worlds (uncertainty). Vessel size 10 or 16.
• Abductive reasoning: events may happens or not. Sequence of events.

URJC | Centre for Intelligent Information Technologies 6/41

http://www.urjc.es

www.urjc.es

Commonsense Reasoning: Event Calculus under s(CASP) (cont.)

• EC uses a universal theory (axioms) to reason about scenarios (narrative).

• Event are actions that may happens at a time point. tapOn Open the tap.
• A fluent is a time-varying property of the world. filling The vessel is been filled.
• Time and/or fluent may have continuous quantities. level(X) Level of water.

• State constraints: represent restrictions on the model:

• To ensure consistency of the narrative w.r.t. the axioms.
:- holds(F,T), -holds(F,T).

• Trajectory: a fluent depends on the time elapsed since an event:

• If at T1 the level of water is L1. Then, at T2 the level is L1+T2-T1.

• Non-monotonic reasoning

• Different scenarios/worlds (uncertainty). Vessel size 10 or 16.
• Abductive reasoning: events may happens or not. Sequence of events.

URJC | Centre for Intelligent Information Technologies 6/41

http://www.urjc.es

www.urjc.es

Commonsense Reasoning: Event Calculus under s(CASP) (cont.)

• EC uses a universal theory (axioms) to reason about scenarios (narrative).

• Event are actions that may happens at a time point. tapOn Open the tap.
• A fluent is a time-varying property of the world. filling The vessel is been filled.
• Time and/or fluent may have continuous quantities. level(X) Level of water.

• State constraints: represent restrictions on the model:

• To ensure consistency of the narrative w.r.t. the axioms.
:- holds(F,T), -holds(F,T).

• Trajectory: a fluent depends on the time elapsed since an event:

• If at T1 the level of water is L1. Then, at T2 the level is L1+T2-T1.

• Non-monotonic reasoning

• Different scenarios/worlds (uncertainty). Vessel size 10 or 16.
• Abductive reasoning: events may happens or not. Sequence of events.

URJC | Centre for Intelligent Information Technologies 6/41

http://www.urjc.es

www.urjc.es

Commonsense Reasoning: Event Calculus under s(CASP) (cont.)

• EC uses a universal theory (axioms) to reason about scenarios (narrative).

• Event are actions that may happens at a time point. tapOn Open the tap.
• A fluent is a time-varying property of the world. filling The vessel is been filled.
• Time and/or fluent may have continuous quantities. level(X) Level of water.

• State constraints: represent restrictions on the model:

• To ensure consistency of the narrative w.r.t. the axioms.
:- holds(F,T), -holds(F,T).

• Trajectory: a fluent depends on the time elapsed since an event:

• If at T1 the level of water is L1. Then, at T2 the level is L1+T2-T1.

• Non-monotonic reasoning

• Different scenarios/worlds (uncertainty). Vessel size 10 or 16.
• Abductive reasoning: events may happens or not. Sequence of events.

URJC | Centre for Intelligent Information Technologies 6/41

http://www.urjc.es

www.urjc.es

Foundations of Constraint ASP without Grounding
ASP + Constraints - Grounding = s(CASP)

• s(CASP) evaluates ASP programs with constraints:

• Follows a top-down execution strategy based on s(ASP) [Marple et al. 2017].
• Constructive negation, not p(X), is resolved against the dual of p(X).

1 p(0) :- s.

2 p(X) :- q(X,Y).

1 not p(X) :- not p1(X), not p2(X).

2 not p1(X) :- X\=0.

3 not p1(X) :- X=0, not s.

4 not p2(X) :- c_forall(Y, not q(X,Y)).

• A new clp(̸=) solver handles (partially) the negation of the unification.
• A new c_forall/2 predicate computes the universal quantifier.

• To ensure consistency the extended compiler synthesizes NMR-check.

1 p(X) :- q(X,Y), not p(X). ∀x(chki (x)←→ ∀y(¬q(x , y) ∨ p(x)))

• Facilitates the integration of different constraint domains, e.g., clp(Q) and clp(R).

URJC | Centre for Intelligent Information Technologies 7/41

http://www.urjc.es

www.urjc.es

Foundations of Constraint ASP without Grounding (cont.)
Internals: Universal quantifier

We execute c_forall(X,goal(X)) to determine if goal(X) is true
...for all possible values of X in its constraint domain.

A1 A2

A3
A4

A′
1

C2

A′
2

C3 A′
3

answers

goal(X){⊤} A′
1 = A1 ∧ ⊤

C2 = ⊤ ∧ ¬A′
1

goal(X){C2}

A′
2 = A2 ∧ C2

C3 = C2 ∧ ¬A′
2

goal(X){C3}

A′
3 = A3 ∧ C3

C4 = C3 ∧ ¬A′
3 = ∅

End

The C-forall evaluation succeeds.

URJC | Centre for Intelligent Information Technologies 8/41

http://www.urjc.es

www.urjc.es

Foundations of Constraint ASP without Grounding (cont.)
Internals: Universal quantifier

We execute c_forall(X,goal(X)) to determine if goal(X) is true
...for all possible values of X in its constraint domain.

A1 A2

A3
A4

A′
1

C2

A′
2

C3 A′
3

answers

goal(X){⊤}

A′
1 = A1 ∧ ⊤

C2 = ⊤ ∧ ¬A′
1

goal(X){C2}

A′
2 = A2 ∧ C2

C3 = C2 ∧ ¬A′
2

goal(X){C3}

A′
3 = A3 ∧ C3

C4 = C3 ∧ ¬A′
3 = ∅

End

The C-forall evaluation succeeds.

URJC | Centre for Intelligent Information Technologies 8/41

http://www.urjc.es

www.urjc.es

Foundations of Constraint ASP without Grounding (cont.)
Internals: Universal quantifier

We execute c_forall(X,goal(X)) to determine if goal(X) is true
...for all possible values of X in its constraint domain.

A1 A2

A3
A4

A′
1

C2

A′
2

C3 A′
3

answers (a)

goal(X){⊤} A′
1 = A1 ∧ ⊤

C2 = ⊤ ∧ ¬A′
1

goal(X){C2}

A′
2 = A2 ∧ C2

C3 = C2 ∧ ¬A′
2

goal(X){C3}

A′
3 = A3 ∧ C3

C4 = C3 ∧ ¬A′
3 = ∅

End

The C-forall evaluation succeeds.

URJC | Centre for Intelligent Information Technologies 8/41

http://www.urjc.es

www.urjc.es

Foundations of Constraint ASP without Grounding (cont.)
Internals: Universal quantifier

We execute c_forall(X,goal(X)) to determine if goal(X) is true
...for all possible values of X in its constraint domain.

A1 A2

A3
A4

A′
1

C2

A′
2

C3

A′
3

answers (a) (b)

goal(X){⊤} A′
1 = A1 ∧ ⊤

C2 = ⊤ ∧ ¬A′
1

goal(X){C2}

A′
2 = A2 ∧ C2

C3 = C2 ∧ ¬A′
2

goal(X){C3}

A′
3 = A3 ∧ C3

C4 = C3 ∧ ¬A′
3 = ∅

End

The C-forall evaluation succeeds.

URJC | Centre for Intelligent Information Technologies 8/41

http://www.urjc.es

www.urjc.es

Foundations of Constraint ASP without Grounding (cont.)
Internals: Universal quantifier

We execute c_forall(X,goal(X)) to determine if goal(X) is true
...for all possible values of X in its constraint domain.

A1 A2

A3
A4

A′
1

C2

A′
2

C3 A′
3

answers (a) (b) (c)

goal(X){⊤} A′
1 = A1 ∧ ⊤

C2 = ⊤ ∧ ¬A′
1

goal(X){C2}

A′
2 = A2 ∧ C2

C3 = C2 ∧ ¬A′
2

goal(X){C3}

A′
3 = A3 ∧ C3

C4 = C3 ∧ ¬A′
3 = ∅

End

The C-forall evaluation succeeds.

URJC | Centre for Intelligent Information Technologies 8/41

http://www.urjc.es

www.urjc.es

Foundations of Constraint ASP without Grounding (cont.)
Internals: Universal quantifier (cont.)

If the set of answers of goal(X) is constraint-compact the algorithm finishes.
...this happens also when the answers do not cover the domain of X.

A1 A2

A3
A4

A′
1

C2

A′
2

C3 A′
3

C4

answers

goal(X){⊤} A′
1 = A1 ∧ ⊤

C2 = ⊤ ∧ ¬A′
1

goal(X){C2}

A′
2 = A2 ∧ C2

C3 = ⊤ ∧ ¬A′
2

goal(X){C3}

A′
3 = A3 ∧ C3

C4 = ⊤ ∧ ¬A′
3

goal(X){C4} fails

The C-forall evaluation fails.

URJC | Centre for Intelligent Information Technologies 9/41

http://www.urjc.es

www.urjc.es

Foundations of Constraint ASP without Grounding (cont.)
Internals: Universal quantifier (cont.)

If the set of answers of goal(X) is constraint-compact the algorithm finishes.
...this happens also when the answers do not cover the domain of X.

A1 A2

A3
A4

A′
1

C2

A′
2

C3 A′
3

C4

answers

goal(X){⊤}

A′
1 = A1 ∧ ⊤

C2 = ⊤ ∧ ¬A′
1

goal(X){C2}

A′
2 = A2 ∧ C2

C3 = ⊤ ∧ ¬A′
2

goal(X){C3}

A′
3 = A3 ∧ C3

C4 = ⊤ ∧ ¬A′
3

goal(X){C4} fails

The C-forall evaluation fails.

URJC | Centre for Intelligent Information Technologies 9/41

http://www.urjc.es

www.urjc.es

Foundations of Constraint ASP without Grounding (cont.)
Internals: Universal quantifier (cont.)

If the set of answers of goal(X) is constraint-compact the algorithm finishes.
...this happens also when the answers do not cover the domain of X.

A1 A2

A3
A4

A′
1

C2

A′
2

C3 A′
3

C4

answers (a)

goal(X){⊤} A′
1 = A1 ∧ ⊤

C2 = ⊤ ∧ ¬A′
1

goal(X){C2}

A′
2 = A2 ∧ C2

C3 = ⊤ ∧ ¬A′
2

goal(X){C3}

A′
3 = A3 ∧ C3

C4 = ⊤ ∧ ¬A′
3

goal(X){C4} fails

The C-forall evaluation fails.

URJC | Centre for Intelligent Information Technologies 9/41

http://www.urjc.es

www.urjc.es

Foundations of Constraint ASP without Grounding (cont.)
Internals: Universal quantifier (cont.)

If the set of answers of goal(X) is constraint-compact the algorithm finishes.
...this happens also when the answers do not cover the domain of X.

A1 A2

A3
A4

A′
1

C2

A′
2

C3

A′
3

C4

answers (a) (b)

goal(X){⊤} A′
1 = A1 ∧ ⊤

C2 = ⊤ ∧ ¬A′
1

goal(X){C2}

A′
2 = A2 ∧ C2

C3 = ⊤ ∧ ¬A′
2

goal(X){C3}

A′
3 = A3 ∧ C3

C4 = ⊤ ∧ ¬A′
3

goal(X){C4} fails

The C-forall evaluation fails.

URJC | Centre for Intelligent Information Technologies 9/41

http://www.urjc.es

www.urjc.es

Foundations of Constraint ASP without Grounding (cont.)
Internals: Universal quantifier (cont.)

If the set of answers of goal(X) is constraint-compact the algorithm finishes.
...this happens also when the answers do not cover the domain of X.

A1 A2

A3
A4

A′
1

C2

A′
2

C3 A′
3

C4

answers (a) (b) (c)

goal(X){⊤} A′
1 = A1 ∧ ⊤

C2 = ⊤ ∧ ¬A′
1

goal(X){C2}

A′
2 = A2 ∧ C2

C3 = ⊤ ∧ ¬A′
2

goal(X){C3}

A′
3 = A3 ∧ C3

C4 = ⊤ ∧ ¬A′
3

goal(X){C4} fails

The C-forall evaluation fails.

URJC | Centre for Intelligent Information Technologies 9/41

http://www.urjc.es

www.urjc.es

Foundations of Constraint ASP without Grounding (cont.)
Implementation

• The resulting program is evaluated by a new interpreter.

∼10X faster

• Delegates unification, disequality, and constraint propagation in Ciao Prolog.
• Detects and handles different types of recursion to avoid infinite loops.
• Returns partial stable models and their corresponding proof trees.

s(CASP) s(ASP)

hanoi(8,T) 1,528 13,297
queens(4,Q) 1,930 20,141
One hamicycle 493 3,499
Two hamicycle 3,605 18,026

Run time (ms) comparison for different ASP programs.

• s(CASP) is available as a bundle of Ciao Prolog
[https://gitlab.software.imdea.org/ciao-lang/sCASP]

URJC | Centre for Intelligent Information Technologies 10/41

http://www.urjc.es
https://gitlab.software.imdea.org/ciao-lang/sCASP

www.urjc.es

Foundations of Constraint ASP without Grounding (cont.)
Implementation

• The resulting program is evaluated by a new interpreter. ∼10X faster
• Delegates unification, disequality, and constraint propagation in Ciao Prolog.
• Detects and handles different types of recursion to avoid infinite loops.
• Returns partial stable models and their corresponding proof trees.

s(CASP) s(ASP)

hanoi(8,T) 1,528 13,297
queens(4,Q) 1,930 20,141
One hamicycle 493 3,499
Two hamicycle 3,605 18,026

Run time (ms) comparison for different ASP programs.

• s(CASP) is available as a bundle of Ciao Prolog
[https://gitlab.software.imdea.org/ciao-lang/sCASP]

URJC | Centre for Intelligent Information Technologies 10/41

http://www.urjc.es
https://gitlab.software.imdea.org/ciao-lang/sCASP

www.urjc.es

Foundations of Constraint ASP without Grounding (cont.)
Implementation

• The resulting program is evaluated by a new interpreter. ∼10X faster
• Delegates unification, disequality, and constraint propagation in Ciao Prolog.
• Detects and handles different types of recursion to avoid infinite loops.
• Returns partial stable models and their corresponding proof trees.

s(CASP) s(ASP)

hanoi(8,T) 1,528 13,297
queens(4,Q) 1,930 20,141
One hamicycle 493 3,499
Two hamicycle 3,605 18,026

Run time (ms) comparison for different ASP programs.

• s(CASP) is available as a bundle of Ciao Prolog
[https://gitlab.software.imdea.org/ciao-lang/sCASP]

URJC | Centre for Intelligent Information Technologies 10/41

http://www.urjc.es
https://gitlab.software.imdea.org/ciao-lang/sCASP

www.urjc.es

Foundations of Constraint ASP without Grounding (cont.)
Implementation

• The resulting program is evaluated by a new interpreter. ∼10X faster
• Delegates unification, disequality, and constraint propagation in Ciao Prolog.
• Detects and handles different types of recursion to avoid infinite loops.
• Returns partial stable models and their corresponding proof trees.

s(CASP) s(ASP)

hanoi(8,T) 1,528 13,297
queens(4,Q) 1,930 20,141
One hamicycle 493 3,499
Two hamicycle 3,605 18,026

Run time (ms) comparison for different ASP programs.

• s(CASP) is available as a bundle of Ciao Prolog ... and SWI Prolog
[https://gitlab.software.imdea.org/ciao-lang/sCASP]

URJC | Centre for Intelligent Information Technologies 10/41

http://www.urjc.es
https://gitlab.software.imdea.org/ciao-lang/sCASP

www.urjc.es

Applications of s(CASP)

• Event Calculus Reasoner. [Arias et al. 2019]

• Model real-word avionics systems. [Hall et al. 2021]
• Used for cyber-defense (network of device). [Moyle et al. 2023]

• Explainable Artificial Intelligence (XAI). [Arias et al. 2020]

• Medical advice system. [Chen et al. 2016]
• Inductive Logic Programming. [Shakerin and Gupta 2019]

• Natural language understanding systems. [Basu et al. 2021a]

• CASPR: chatbot for the “Alexa Grand Challenge 4”. [Basu et al. 2021b]

• Coding rule 34 of the Singapore Bar. [Morris 2021]

• Administrative and judicial discretion reasoner. [Arias et al. 2021]

• A spatial reasoner for Building Information Modelling. [Arias et al. 2022]

... and others (visit GDE’21, GDE’22, GDE’23 Workshops).
URJC | Centre for Intelligent Information Technologies 11/41

http://www.urjc.es

www.urjc.es

Applications of s(CASP)

• Event Calculus Reasoner. [Arias et al. 2019]

• Model real-word avionics systems. [Hall et al. 2021]
• Used for cyber-defense (network of device). [Moyle et al. 2023]

• Explainable Artificial Intelligence (XAI). [Arias et al. 2020]

• Medical advice system. [Chen et al. 2016]
• Inductive Logic Programming. [Shakerin and Gupta 2019]

• Natural language understanding systems. [Basu et al. 2021a]

• CASPR: chatbot for the “Alexa Grand Challenge 4”. [Basu et al. 2021b]

• Coding rule 34 of the Singapore Bar. [Morris 2021]

• Administrative and judicial discretion reasoner. [Arias et al. 2021]

• A spatial reasoner for Building Information Modelling. [Arias et al. 2022]

... and others (visit GDE’21, GDE’22, GDE’23 Workshops).
URJC | Centre for Intelligent Information Technologies 11/41

http://www.urjc.es

www.urjc.es

Applications of s(CASP)

• Event Calculus Reasoner. [Arias et al. 2019]

• Model real-word avionics systems. [Hall et al. 2021]
• Used for cyber-defense (network of device). [Moyle et al. 2023]

• Explainable Artificial Intelligence (XAI). [Arias et al. 2020]

• Medical advice system. [Chen et al. 2016]
• Inductive Logic Programming. [Shakerin and Gupta 2019]

• Natural language understanding systems. [Basu et al. 2021a]

• CASPR: chatbot for the “Alexa Grand Challenge 4”. [Basu et al. 2021b]

• Coding rule 34 of the Singapore Bar. [Morris 2021]

• Administrative and judicial discretion reasoner. [Arias et al. 2021]

• A spatial reasoner for Building Information Modelling. [Arias et al. 2022]

... and others (visit GDE’21, GDE’22, GDE’23 Workshops).
URJC | Centre for Intelligent Information Technologies 11/41

http://www.urjc.es

www.urjc.es

Applications of s(CASP)

• Event Calculus Reasoner. [Arias et al. 2019]

• Model real-word avionics systems. [Hall et al. 2021]
• Used for cyber-defense (network of device). [Moyle et al. 2023]

• Explainable Artificial Intelligence (XAI). [Arias et al. 2020]

• Medical advice system. [Chen et al. 2016]
• Inductive Logic Programming. [Shakerin and Gupta 2019]

• Natural language understanding systems. [Basu et al. 2021a]

• CASPR: chatbot for the “Alexa Grand Challenge 4”. [Basu et al. 2021b]

• Coding rule 34 of the Singapore Bar. [Morris 2021]

• Administrative and judicial discretion reasoner. [Arias et al. 2021]

• A spatial reasoner for Building Information Modelling. [Arias et al. 2022]

... and others (visit GDE’21, GDE’22, GDE’23 Workshops).
URJC | Centre for Intelligent Information Technologies 11/41

http://www.urjc.es

www.urjc.es

Modeling Administrative Discretion Using Goal-Directed Answer Set Programming.
Joaqúın Arias, Mar Moreno-Rebato, José A. Rodŕıguez-Garćıa, and Sascha Ossowski (2021).

URJC | Centre for Intelligent Information Technologies 12/41

http://www.urjc.es

www.urjc.es

s(LAW): Introduction [Arias et al. 2021]

• Formal representation & automated reasoning of legal texts:

• Interest in smart contracts, and public administrations [13; 27; 39].
• For deterministic rules: proposals on logic programming [33; 35].

• However, they do not easily represent ambiguity or discretion.

Our Proposal: s(LAW)

• Based on s(CASP) [Arias et al. 2018].

• Allows modeling legal rules involving ambiguity:

• E.g. awarding school places in “Comunidad de Madrid”.

• Supports reasoning and infers conclusion based on these rules.

• Provides justifications of the inferences (in NL) [Arias et al. 2020].

URJC | Centre for Intelligent Information Technologies 13/41

http://www.urjc.es

www.urjc.es

s(LAW): Introduction [Arias et al. 2021]

• Formal representation & automated reasoning of legal texts:

• Interest in smart contracts, and public administrations [13; 27; 39].
• For deterministic rules: proposals on logic programming [33; 35].

• However, they do not easily represent ambiguity or discretion.

Our Proposal: s(LAW)

• Based on s(CASP) [Arias et al. 2018].

• Allows modeling legal rules involving ambiguity:

• E.g. awarding school places in “Comunidad de Madrid”.

• Supports reasoning and infers conclusion based on these rules.

• Provides justifications of the inferences (in NL) [Arias et al. 2020].

URJC | Centre for Intelligent Information Technologies 13/41

http://www.urjc.es

www.urjc.es

s(LAW): Administrative and judicial discretion reasoner

Two main contributions:

• Set of patterns to translate legal rules
into ASP.

• Including patterns to generate read-
able justifications.

• Framework to model, reason, and justify
conclusions based on:

• Evidences provided by the user.
• The applicable legislation.
• Representing ambiguity, discretion

or incomplete information .

Related Work:
• Human-Understandable explanation for

AI advice:

• Not possible for ML-based systems.

• Current ASP explanation
frameworks [10; 32; 34]:

• Only support grounded programs,
• ... or do not justify negated

literals,
• ... and, do not support constraints

and/or dense domains.

URJC | Centre for Intelligent Information Technologies 14/41

http://www.urjc.es

www.urjc.es

s(LAW): Administrative and judicial discretion reasoner

Two main contributions:

• Set of patterns to translate legal rules
into ASP.

• Including patterns to generate read-
able justifications.

• Framework to model, reason, and justify
conclusions based on:

• Evidences provided by the user.
• The applicable legislation.
• Representing ambiguity, discretion

or incomplete information .

Related Work:
• Human-Understandable explanation for

AI advice:

• Not possible for ML-based systems.

• Current ASP explanation
frameworks [10; 32; 34]:

• Only support grounded programs,
• ... or do not justify negated

literals,
• ... and, do not support constraints

and/or dense domains.

URJC | Centre for Intelligent Information Technologies 14/41

http://www.urjc.es

www.urjc.es

s(LAW): latest BREAKING use case

URJC | Centre for Intelligent Information Technologies 15/41

http://www.urjc.es

www.urjc.es

s(LAW): Patterns to translate law into ASP
Requirement For Applying

• Disjunction S/he obtains a school place if one of the following common requirements are met

• Conjunction In addition, some of the specific requirements must be met

Exceptions For Applying Students coming from non-bilingual schools, need to accredit B1

Ambiguity In case of force majeure, students may be reassigned to a school from another district

This pattern generates two models:

• One where force_majeure is assumed to hold.

• Another model where there is no evidence that force_majeure holds.

Discretion To Act The School Council may add another complementary criterion

Unknown Information It may be unclear whether the documents we have are valid or not

• -evidence/1: The strong negation (-) is used to specify that we have evidences
supporting the falsehood of some information.

URJC | Centre for Intelligent Information Technologies 16/41

http://www.urjc.es

www.urjc.es

s(LAW): The framework

ArticleESO.pl
• Contains the legislation rules in Fig. 1 following

the patterns described.

ArticleESO.pre.pl
• Contains the natural language patterns to

provide readable justifications.

• The directive #pred defines the natural language
patterns, e.g.:

#pred obtain_place :: 's/he may obtain a

school place'.
• Additionally, we can obtain a readable code in

NL by invoking scasp --code --human.

StudentXX.pl

• Last module in Fig. 2 encodes the evidences of a
student and links the previous modules.

• The code XX corresponds to the ‘id’ of each
student (from 01 to 06).

• Table 1 shows the data corresponding to the
candidates and the conclusion generated by
s(LAW) for the query ?-obtain_place.

• Students 01, 03, 04, and 05 obtain a place
at the school while students 02 and 06 do
not.

URJC | Centre for Intelligent Information Technologies 17/41

http://www.urjc.es

www.urjc.es

s(LAW): The framework - ArticleESO.pl
1 obtain_place :-

2 met_requirement,

3 not exception.

4 met_requirement :-

5 met_common_requirement,

6 met_specific_requirement.

7 %% Common requirements:

8 met_common_requirement :-

9 large_family.

10

11 met_common_requirement :-

12 recipient_social_benefits.

13 recipient_social_benefits :-

14 renta_minima_insercion.

15 recipient_social_benefits :-

16 ingreso_minimo_vital.

17

18 met_common_requirement :-

19 disability_status.

20 disability_status :-

21 disabled_parent.

22 disability_status :-

23 disabled_sibling.

24 %% Specific requirements:

25 met_specific_requirement :-

26 sibling_enroll_center.

27 met_specific_requirement :-

28 legal_guardian_work_center.

29 met_specific_requirement :-

30 relative_former_student.

31 met_specific_requirement :-

32 school_proximity.

33 school_proximity :-

34 same_education_district.

35 school_proximity :-

36 not same_education_district,

37 force_majeure. % Ambiguity

38

39 force_majeure :-

40 not n_force_majeure.

41 n_force_majeure :-

42 not force_majeure.

43 %% Exceptions:

44 exception :-

45 come_non_bilingual,

46 want_bilingual_section(Course),

47 not accredit_english_level(Course).

48

49 accredit_english_level('1st ESO') :-

50 b1_certificate.

51 accredit_english_level('2nd ESO') :-

52 b1_certificate.

53 accredit_english_level('3rd ESO') :-

54 b2_certificate.

55 accredit_english_level('4th ESO') :-

56 b2_certificate.

57 %% Discretion To Act:

58 obtain_place :-

59 not met_requirement,

60 met_complementary_criterion(CC).

61 obtain_place :-

62 met_requirement, exception,

63 met_complementary_criterion(CC).

64

65 met_complementary_criterion(CC) :-

66 school_criteria(CC),

67 purpose(CC), not unlawful(CC),

68 not n_met_complementary_criterion(CC).

69 n_nmet_complementary_criterion(CC) :-

70 not met_complementary_criterion(CC).

71

72 purpose(CC) :- promote_diversity(CC).

73 unlawful(CC) :- sex_discrimination(CC).

74 unlawful(CC) :- race_discrimination(CC).

75 unlawful(CC) :- religion_discrimination(CC).

76

77 school_criteria(foreign_student) :-

78 foreign_student.

79 school_criteria(specific_etnia) :-

80 specific_etnia.

81 promote_diversity(foreign_student).

82 promote_diversity(specific_etnia).

83 race_discrimination(specific_etnia).

Figure: Translation of the procedure for awarding school places under s(LAW).

URJC | Centre for Intelligent Information Technologies 18/41

http://www.urjc.es

www.urjc.es

s(LAW): The framework - Student01.pl

1 #include('ArticleESO.pl').
2 #include('ArticleESO.pred.pl').
3

4 come_non_bilingual.
5 want_bilingual_section('2nd ESO').
6

7 evidence(large_family).
8 evidence(renta_minima_insercion).
9 evidence(sibling_enroll_center).

10 evidence(same_education_district).
11 evidence(b1_certificate).
12 -evidence(foreign_student).
13 -evidence(specific_etnia).

Figure: Data of student 01.

URJC | Centre for Intelligent Information Technologies 19/41

http://www.urjc.es

www.urjc.es

Evaluation: Reasoning and Deduction with Real Use-Cases

Table: Case of different students evaluated using s(LAW).
Note: ‘+’ is a positive evidence, ‘−’ is a negative evidence, ‘?’ means unkown.

Student01 Student02 Student03 Student04 Student05 Student06

large_family + + + − − −
renta_minima_insercion + + + ? − −

sibling_enroll_center + + − + − −
same_education_district + + − + − −

b1_certificate + − + ? − −

foreign_student − − − − + −
specific_etnia − − − − − +

?- obtain_place yes no yes yes yes no

URJC | Centre for Intelligent Information Technologies 20/41

http://www.urjc.es

www.urjc.es

Evaluation: A Priori Deduction

• Student 01: S/he meets the requirements and has B1:

{ obtain_place, large_family, sibling_enroll_center, come_non_bilingual,

want_bilingual_section(2nd ESO), b1_certificate }

... and the corresponding justification in NL.

s/he may obtain a school place, because

a common requirement is met, because

s/he is part of a large family.

a specific requirement is met, because

s/he has siblings enrolled in the center.

there is no evidence that an exception applies, because

s/he came from a non-bilingual public school, and

s/he wish to study 2nd ESO in the Bilingual Section, and

s/he accredit required level of English for 2nd ESO, because

in the four skills certificate level b1.

Figure: Justification in Natural Language for the evaluation of student01.pl.

URJC | Centre for Intelligent Information Technologies 21/41

http://www.urjc.es

www.urjc.es

Evaluation: A Priori Deduction

• Student 01: S/he meets the requirements and has B1:

{ obtain_place, large_family, sibling_enroll_center, come_non_bilingual,

want_bilingual_section(2nd ESO), b1_certificate }

... and the corresponding justification in NL.

s/he may obtain a school place, because

a common requirement is met, because

s/he is part of a large family.

a specific requirement is met, because

s/he has siblings enrolled in the center.

there is no evidence that an exception applies, because

s/he came from a non-bilingual public school, and

s/he wish to study 2nd ESO in the Bilingual Section, and

s/he accredit required level of English for 2nd ESO, because

in the four skills certificate level b1.

Figure: Justification in Natural Language for the evaluation of student01.pl.

URJC | Centre for Intelligent Information Technologies 21/41

http://www.urjc.es

www.urjc.es

Evaluation: A Posteriori Deduction

• Student 06: Justification for ?-not obtain_place.

there is no evidence that s/he may obtain a school place, because

there is no evidence that a common requirement is met, because

there is no evidence that s/he is part of a large family, and

there is no evidence that s/he is a recipient of the RMI, and

there is no evidence that a parent or sibling has disability status.

there is no evidence that the criterion foreign_student is met, because

there is no evidence that s/he meets the criteria foreign_student, because

there is no evidence that s/he is a foreign student.

there is no evidence that the criterion specific_etnia is met, because

s/he meets the criteria specific_etnia, because

s/he belongs to a specific etnia.

specific_etnia follows the purpose of the procedure, because

specific_etnia promotes the diversity.

specific_etnia is illegal, because

specific_etnia discriminates based on race.

Figure: Justification in Natural Language for the evaluation of student06.pl.

URJC | Centre for Intelligent Information Technologies 22/41

http://www.urjc.es

www.urjc.es

Evaluation: A Posteriori Deduction

• Student 06: Justification for ?-not obtain_place.

there is no evidence that s/he may obtain a school place, because

there is no evidence that a common requirement is met, because

there is no evidence that s/he is part of a large family, and

there is no evidence that s/he is a recipient of the RMI, and

there is no evidence that a parent or sibling has disability status.

there is no evidence that the criterion foreign_student is met, because

there is no evidence that s/he meets the criteria foreign_student, because

there is no evidence that s/he is a foreign student.

there is no evidence that the criterion specific_etnia is met, because

s/he meets the criteria specific_etnia, because

s/he belongs to a specific etnia.

specific_etnia follows the purpose of the procedure, because

specific_etnia promotes the diversity.

specific_etnia is illegal, because

specific_etnia discriminates based on race.

Figure: Justification in Natural Language for the evaluation of student06.pl.

URJC | Centre for Intelligent Information Technologies 22/41

http://www.urjc.es

www.urjc.es

Conclusions

• s(LAW) is capable of modeling discretion to act, ambiguity and unknown
information.

• It exhibits the property of modelling vague concepts.

• The deduction based on s(LAW) allows:

• The consideration of different conclusions (multiple models):
• The reasoning about the set of these conclusions/models.

Future work
• Modeling the complete legislation by tabulation for the criteria.

• Exploit the underlying constraint solver of s(CASP).

• Extend s(LAW) considering “Epistemic Specifications” [15]:

• What is true in all/some models, models sharing assumptions...

URJC | Centre for Intelligent Information Technologies 23/41

http://www.urjc.es

www.urjc.es

Conclusions

• s(LAW) is capable of modeling discretion to act, ambiguity and unknown
information.

• It exhibits the property of modelling vague concepts.

• The deduction based on s(LAW) allows:

• The consideration of different conclusions (multiple models):
• The reasoning about the set of these conclusions/models.

Future work
• Modeling the complete legislation by tabulation for the criteria.

• Exploit the underlying constraint solver of s(CASP).

• Extend s(LAW) considering “Epistemic Specifications” [15]:

• What is true in all/some models, models sharing assumptions...

URJC | Centre for Intelligent Information Technologies 23/41

http://www.urjc.es

www.urjc.es

Conclusions

• s(LAW) is capable of modeling discretion to act, ambiguity and unknown
information.

• It exhibits the property of modelling vague concepts.

• The deduction based on s(LAW) allows:

• The consideration of different conclusions (multiple models):
• The reasoning about the set of these conclusions/models.

Future work
• Modeling the complete legislation by tabulation for the criteria.

• Exploit the underlying constraint solver of s(CASP).

• Extend s(LAW) considering “Epistemic Specifications” [15]:

• What is true in all/some models, models sharing assumptions...

URJC | Centre for Intelligent Information Technologies 23/41

http://www.urjc.es

www.urjc.es

Building Information Modeling Using Constraint Logic Programming.
Joaqúın Arias, Seppo Törmä, Manuel Carro, and Gopal Gupta (2022).

URJC | Centre for Intelligent Information Technologies 24/41

http://www.urjc.es

www.urjc.es

Spatial Reasoner: Introduction [Arias et al. 2022]

• Building Information Modeling (BIM) represents the 3D geometry and
properties (costs, materials, process, etc.), of buildings as digital models.

• For each building, architects and engineers create specifics models.

• These specifics models must be shared and combined.
• Automated tools are needed to check the integrity of the merged

model.
• In addition, the models must comply with building regulations.

• The design and construction of a building is a sequence of decisions.

Automated BIM tools must:
• Combine geometrical reasoning and symbolic/conceptual knowledge.

• Reason in presence of vague concepts and incomplete information.

• Deal with the ambiguity present in regulatory codes and standards.

URJC | Centre for Intelligent Information Technologies 25/41

http://www.urjc.es

www.urjc.es

Spatial Reasoner: Introduction [Arias et al. 2022]

• Building Information Modeling (BIM) represents the 3D geometry and
properties (costs, materials, process, etc.), of buildings as digital models.

• For each building, architects and engineers create specifics models.

• These specifics models must be shared and combined.
• Automated tools are needed to check the integrity of the merged

model.
• In addition, the models must comply with building regulations.

• The design and construction of a building is a sequence of decisions.

Automated BIM tools must:
• Combine geometrical reasoning and symbolic/conceptual knowledge.

• Reason in presence of vague concepts and incomplete information.

• Deal with the ambiguity present in regulatory codes and standards.

URJC | Centre for Intelligent Information Technologies 25/41

http://www.urjc.es

www.urjc.es

Spatial Reasoner for Building Information Modeling

Logic programming-based tools meet many of the requirements:
• The following examples overcome some limitations of IFC-based tools:

• The query language, BimSPARQL [44].
• Model checkers for safety [45] or acoustic rules [31], and BIMRL [40].
• A translator of building regulation, KBimCode [21].
• A tool based on clingo, ASP4BIM [25].

• However, they have limitations in meeting all requirements.

Our Proposal: Spatial Reasoner
• Use tools integrating Constraint Logic Programming with ASP to model

dynamic information and restrictions in BIM models.

• Shift from BIM verification to BIM refinement and to facilitate the
implementation of new specifications, construction standards, etc.

URJC | Centre for Intelligent Information Technologies 26/41

http://www.urjc.es

www.urjc.es

Spatial Reasoner for Building Information Modeling

Logic programming-based tools meet many of the requirements:
• The following examples overcome some limitations of IFC-based tools:

• The query language, BimSPARQL [44].
• Model checkers for safety [45] or acoustic rules [31], and BIMRL [40].
• A translator of building regulation, KBimCode [21].
• A tool based on clingo, ASP4BIM [25].

• However, they have limitations in meeting all requirements.

Our Proposal: Spatial Reasoner
• Use tools integrating Constraint Logic Programming with ASP to model

dynamic information and restrictions in BIM models.

• Shift from BIM verification to BIM refinement and to facilitate the
implementation of new specifications, construction standards, etc.

URJC | Centre for Intelligent Information Technologies 26/41

http://www.urjc.es

www.urjc.es

Spatial Reasoner under s(CASP): Contributions

• A framework, based on Constraint Answer Set Programming (CASP),
that allows unified geometrical and non-geometrical information.

• The prototype of a preliminary 3D reasoner under Prolog with CLP(Q/R)
that we evaluate with several BIM models.

• The outline of an alternative implementation of this spatial reasoner
under CASP, using s(CASP) [3], a goal-directed implementation.

Evidence of advantages of s(CASP) in evaluating BIM models:

• It has the relevance property,

• It can generate justifications for negative queries, and

• It makes representing and reasoning with ambiguities easier.

URJC | Centre for Intelligent Information Technologies 27/41

http://www.urjc.es

www.urjc.es

Spatial Reasoner under s(CASP): Contributions

• A framework, based on Constraint Answer Set Programming (CASP),
that allows unified geometrical and non-geometrical information.

• The prototype of a preliminary 3D reasoner under Prolog with CLP(Q/R)
that we evaluate with several BIM models.

• The outline of an alternative implementation of this spatial reasoner
under CASP, using s(CASP) [3], a goal-directed implementation.

Evidence of advantages of s(CASP) in evaluating BIM models:

• It has the relevance property,

• It can generate justifications for negative queries, and

• It makes representing and reasoning with ambiguities easier.

URJC | Centre for Intelligent Information Technologies 27/41

http://www.urjc.es

www.urjc.es

Spatial Reasoner: Background, BIM + IFC

• Building information modeling (BIM):

• Combine geometrical information with:
costs, materials, process, etc.
• Allow cost estimations, quantify takeoffs,

energy analysis, etc.
• Goal: achieve consistent of digital models:

• shared with architects, engineers...
• throughout the life cycle of a facility.

• The UK Government requires Level 2 of BIM
maturity for any public project.

• BIM authoring tools: Revit, ArchiCAD, Tekla
Structures, Allplan...

• Common data model: Industry Foundation
Classes (IFC) [9].

URJC | Centre for Intelligent Information Technologies 28/41

http://www.urjc.es

www.urjc.es

Modeling and manipulating 3D objects: CLP(Q/R)

• Convex shapes are represented using linear equations.

• CLP(Q/R) [20] can be used to solve the resulting linear constraints.

• Using CLP(Q/R) objects are represented as a list of convex shapes:

1 box(point(Xa,Ya,Za), point(Xb,Yb,Zb), [convex([X,Y,Z])]) :-

2 X#>=Xa, X#<Xb, Y#>=Ya, Y#<Yb, Z#>=Za, Z#<Zb.

• Operations: union, intersection, complement, and subtraction:

1 obj(r1, [convex([X,Y])]) :- X#>=1, X#<4, Y#>=2, Y#<5.

2 obj(r2, [convex([X,Y])]) :- X#>=3, X#<5, Y#>=1, Y#<4.

?- obj(r1,Sh1), obj(r2,Sh2),sh_intersection(Sh1, Sh2, Int).

Int = [convex([A,B])], A#>=3, A#<4, B#>=2, B#<4 ?

?- obj(r1,Sh1), obj(r2,Sh2),sh_subtraction(Sh1, Sh2, Sub).

Sub = [convex([A,B]),convex([C,D])],

A#>=1,A#<3,B#>=2,B#<5, C#>=3,C#<4,D#>=4,D#<5 ?

URJC | Centre for Intelligent Information Technologies 29/41

http://www.urjc.es

www.urjc.es

Modeling and manipulating 3D objects: CLP(Q/R)

• Convex shapes are represented using linear equations.

• CLP(Q/R) [20] can be used to solve the resulting linear constraints.

• Using CLP(Q/R) objects are represented as a list of convex shapes:

1 box(point(Xa,Ya,Za), point(Xb,Yb,Zb), [convex([X,Y,Z])]) :-

2 X#>=Xa, X#<Xb, Y#>=Ya, Y#<Yb, Z#>=Za, Z#<Zb.

• Operations: union, intersection, complement, and subtraction:

1 obj(r1, [convex([X,Y])]) :- X#>=1, X#<4, Y#>=2, Y#<5.

2 obj(r2, [convex([X,Y])]) :- X#>=3, X#<5, Y#>=1, Y#<4.

?- obj(r1,Sh1), obj(r2,Sh2),sh_intersection(Sh1, Sh2, Int).

Int = [convex([A,B])], A#>=3, A#<4, B#>=2, B#<4 ?

?- obj(r1,Sh1), obj(r2,Sh2),sh_subtraction(Sh1, Sh2, Sub).

Sub = [convex([A,B]),convex([C,D])],

A#>=1,A#<3,B#>=2,B#<5, C#>=3,C#<4,D#>=4,D#<5 ?

URJC | Centre for Intelligent Information Technologies 29/41

http://www.urjc.es

www.urjc.es

Modeling and manipulating 3D objects: s(CASP) I

• The representation of the convex shapes are part of the program:

1 convex(r1, X, Y) :- X#>=1, X#<4, Y#>=2, Y#<5.

2 convex(r2, X, Y) :- X#>=3, X#<5, Y#>=1, Y#<4.

• They are handled as part of the constraint store of the program.

• A non-convex object is represented with several clauses, one for each
convex shape:

?- shape_intersect(r1,r2,Int).

Int = convex([A | { A#>=3, A#<4 }, B | { B#>=2, B#<4 }]) ?

?- shape_subtract(r1,r2,Sub).

Sub = convex([A | { A#>=1, A#<3 }, B | { B#>=2, B#<5 }]) ? ;

Sub = convex([A | { A#>=3, A#<4 }, B | { B#>=4, B#<5 }]) ?

URJC | Centre for Intelligent Information Technologies 30/41

http://www.urjc.es

www.urjc.es

Modeling and manipulating 3D objects: s(CASP) I

• The representation of the convex shapes are part of the program:

1 convex(r1, X, Y) :- X#>=1, X#<4, Y#>=2, Y#<5.

2 convex(r2, X, Y) :- X#>=3, X#<5, Y#>=1, Y#<4.

• They are handled as part of the constraint store of the program.

• A non-convex object is represented with several clauses, one for each
convex shape:

?- shape_intersect(r1,r2,Int).

Int = convex([A | { A#>=3, A#<4 }, B | { B#>=2, B#<4 }]) ?

?- shape_subtract(r1,r2,Sub).

Sub = convex([A | { A#>=1, A#<3 }, B | { B#>=2, B#<5 }]) ? ;

Sub = convex([A | { A#>=3, A#<4 }, B | { B#>=4, B#<5 }]) ?

URJC | Centre for Intelligent Information Technologies 30/41

http://www.urjc.es

www.urjc.es

Modeling and manipulating 3D objects: s(CASP) II

Operations on a 2D space using s(CASP)

1 % Union = ShA ∪ ShB

2 shape_union(IdA, IdB, convex([X,Y])) :- convex(IdA,X,Y).

3 shape_union(IdA, IdB, convex([X,Y])) :- convex(IdB,X,Y).

4 % Intersection = ShA ∩ ShB

5 shape_intersect(IdA, IdB, convex([X,Y])) :- convex(IdA,X,Y), convex(IdB,X,Y).

6 % Complement = ¬ ShA

7 shape_complement(IdA, convex([X,Y])) :- not convex(IdA,X,Y).

8 % Subtract = ShA ∩ ¬ ShB

9 shape_subtract(IdA, IdB, convex([X,Y])) :- convex(IdA,X,Y), not convex(IdB,X,Y).

• 9 lines of code instead of 39 lines.

• Spatial operations are translated into logical operations.

URJC | Centre for Intelligent Information Technologies 31/41

http://www.urjc.es

www.urjc.es

(Non)-monotonic iteration in BIM models
• Consider the design process of a room and the fire safety norm below:

• If a gas boiler is used, the ventilation must be natural.
window surface area is at least 10% of the floor area.

• If the boiler is electric, the ventilation could be natural or mechanical.

• Possible timeline:

1. Initially, the shared BIM model has no
ventilation or boiler restrictions.

2. The architect reduces the size of the
window (surface less that 10%).

3. ALERT: An electric boiler is selected.
4. At the same time, the engineer selects a

gas boiler for efficiency.
5. ALERT: Ventilation must be natural.
6. ERROR: when attempting to merge both

models, an inconsistency is detected.

• A naive approach to handle the ERROR
would broadcast the inconsistency.

Proposal:
• A continuous integration reasoner:

• that determines who is the expert
whose opinion prevails

• makes a decision based on that.
• notifies the other party to confirm

the adjustments.

URJC | Centre for Intelligent Information Technologies 32/41

http://www.urjc.es

www.urjc.es

(Non)-monotonic iteration in BIM models
• Consider the design process of a room and the fire safety norm below:

• If a gas boiler is used, the ventilation must be natural.
window surface area is at least 10% of the floor area.

• If the boiler is electric, the ventilation could be natural or mechanical.

• Possible timeline:

1. Initially, the shared BIM model has no
ventilation or boiler restrictions.

2. The architect reduces the size of the
window (surface less that 10%).

3. ALERT: An electric boiler is selected.
4. At the same time, the engineer selects a

gas boiler for efficiency.
5. ALERT: Ventilation must be natural.
6. ERROR: when attempting to merge both

models, an inconsistency is detected.

• A naive approach to handle the ERROR
would broadcast the inconsistency.

Proposal:
• A continuous integration reasoner:

• that determines who is the expert
whose opinion prevails

• makes a decision based on that.
• notifies the other party to confirm

the adjustments.

URJC | Centre for Intelligent Information Technologies 32/41

http://www.urjc.es

www.urjc.es

(Non)-monotonic iteration in BIM models
• Consider the design process of a room and the fire safety norm below:

• If a gas boiler is used, the ventilation must be natural.
window surface area is at least 10% of the floor area.

• If the boiler is electric, the ventilation could be natural or mechanical.

• Possible timeline:

1. Initially, the shared BIM model has no
ventilation or boiler restrictions.

2. The architect reduces the size of the
window (surface less that 10%).

3. ALERT: An electric boiler is selected.
4. At the same time, the engineer selects a

gas boiler for efficiency.
5. ALERT: Ventilation must be natural.
6. ERROR: when attempting to merge both

models, an inconsistency is detected.

• A naive approach to handle the ERROR
would broadcast the inconsistency.

Proposal:
• A continuous integration reasoner:

• that determines who is the expert
whose opinion prevails

• makes a decision based on that.
• notifies the other party to confirm

the adjustments.

URJC | Centre for Intelligent Information Technologies 32/41

http://www.urjc.es

www.urjc.es

(Non)-monotonic iteration in BIM models
• Consider the design process of a room and the fire safety norm below:

• If a gas boiler is used, the ventilation must be natural.
window surface area is at least 10% of the floor area.

• If the boiler is electric, the ventilation could be natural or mechanical.

• Possible timeline:

1. Initially, the shared BIM model has no
ventilation or boiler restrictions.

2. The architect reduces the size of the
window (surface less that 10%).

3. ALERT: An electric boiler is selected.
4. At the same time, the engineer selects a

gas boiler for efficiency.
5. ALERT: Ventilation must be natural.
6. ERROR: when attempting to merge both

models, an inconsistency is detected.

• A naive approach to handle the ERROR
would broadcast the inconsistency.

Proposal:
• A continuous integration reasoner:

• that determines who is the expert
whose opinion prevails

• makes a decision based on that.
• notifies the other party to confirm

the adjustments.

URJC | Centre for Intelligent Information Technologies 32/41

http://www.urjc.es

www.urjc.es

(Non)-monotonic iteration in BIM models (cont.)

Encoding of a Continuous Integration reasoner

1 %% BIM Continuous Integration

2 valid_data(P,Data) :-

3 data(P,Data),

4 not canceled(P, Data).

5

6 canceled(P, Data) :-

7 higher_confidence(P1, P),

8 data(P1, Data1),

9 inconsistent(Data, Data1).

10 higher_confidence(PHi, PLo) :-

11 PHi.>.PLo.

12 %% Example

13 inconsistent(boiler(gas),

14 ventilation(artificial)).

15 inconsistent(ventilation(artificial),

16 boiler(gas)).

17 data(1,ventilation(X)).

18 data(2,ventilation(natural)).

19 data(2,boiler(gas)).

20 % data(3,ventilation(artificial)).

21 % data(3,boiler(electrical)).

22 % data(4,boiler(gas)).

URJC | Centre for Intelligent Information Technologies 33/41

http://www.urjc.es

www.urjc.es

Evaluation I: Comprehensibility (reason in presence of vague concepts)

• Reason about various scenarios simultaneously (or not).

1 % Hotel with 8 rooms - only the size of 3 of them is known.

2 room(r1). room(r2). room(r3). room(r4).

3 room(r5). room(r6). room(r7). room(r8).

4 size(r1, 25). size(r2, 5). size(r3, 15).

5 % Uncertain whether rooms of 10 to 20 m2 are small or not.

6 evidence(Room, small) :- size(Room,Size), Size#<10.

7 -evidence(Room, small) :- size(Room,Size), Size#>20.

8 % Explicit evidence for / against or generate two models.

9 small(Room) :- evidence(Room,small).

10 -small(Room) :- -evidence(Room,small).

11 small(Room) :- not evidence(Room,small), not -small(Room).

12 -small(Room) :- not -evidence(Room,small), not small(Room).

13 % Inferring conclusions from evidence and/or assumptions.

14 room_is(Room,big) :- room(Room), -small(Room).

15 room_is(Room,small) :- room(Room), small(Room).

• For ?- room_is(Room,Size):

• s(CASP) returns 14 partial
models.

• clingo returns 64 models.

Considering 16 rooms
• s(CASP) returns 30 partial models.

• clingo returns 16384 models.

This exponential explosion in the
models generated by clingo...

... reduces the comprehensibility.

URJC | Centre for Intelligent Information Technologies 34/41

http://www.urjc.es

www.urjc.es

Evaluation I: Comprehensibility (reason in presence of vague concepts)

• Reason about various scenarios simultaneously (or not).

1 % Hotel with 8 rooms - only the size of 3 of them is known.

2 room(r1). room(r2). room(r3). room(r4).

3 room(r5). room(r6). room(r7). room(r8).

4 size(r1, 25). size(r2, 5). size(r3, 15).

5 % Uncertain whether rooms of 10 to 20 m2 are small or not.

6 evidence(Room, small) :- size(Room,Size), Size#<10.

7 -evidence(Room, small) :- size(Room,Size), Size#>20.

8 % Explicit evidence for / against or generate two models.

9 small(Room) :- evidence(Room,small).

10 -small(Room) :- -evidence(Room,small).

11 small(Room) :- not evidence(Room,small), not -small(Room).

12 -small(Room) :- not -evidence(Room,small), not small(Room).

13 % Inferring conclusions from evidence and/or assumptions.

14 room_is(Room,big) :- room(Room), -small(Room).

15 room_is(Room,small) :- room(Room), small(Room).

• For ?- room_is(Room,Size):

• s(CASP) returns 14 partial
models.

• clingo returns 64 models.

Considering 16 rooms
• s(CASP) returns 30 partial models.

• clingo returns 16384 models.

This exponential explosion in the
models generated by clingo...

... reduces the comprehensibility.

URJC | Centre for Intelligent Information Technologies 34/41

http://www.urjc.es

www.urjc.es

Evaluation I: Comprehensibility (reason in presence of vague concepts)

• Reason about various scenarios simultaneously (or not).

1 % Hotel with 8 rooms - only the size of 3 of them is known.

2 room(r1). room(r2). room(r3). room(r4).

3 room(r5). room(r6). room(r7). room(r8).

4 size(r1, 25). size(r2, 5). size(r3, 15).

5 % Uncertain whether rooms of 10 to 20 m2 are small or not.

6 evidence(Room, small) :- size(Room,Size), Size#<10.

7 -evidence(Room, small) :- size(Room,Size), Size#>20.

8 % Explicit evidence for / against or generate two models.

9 small(Room) :- evidence(Room,small).

10 -small(Room) :- -evidence(Room,small).

11 small(Room) :- not evidence(Room,small), not -small(Room).

12 -small(Room) :- not -evidence(Room,small), not small(Room).

13 % Inferring conclusions from evidence and/or assumptions.

14 room_is(Room,big) :- room(Room), -small(Room).

15 room_is(Room,small) :- room(Room), small(Room).

• For ?- room_is(Room,Size):

• s(CASP) returns 14 partial
models.

• clingo returns 64 models.

Considering 16 rooms
• s(CASP) returns 30 partial models.

• clingo returns 16384 models.

This exponential explosion in the
models generated by clingo...

... reduces the comprehensibility.

URJC | Centre for Intelligent Information Technologies 34/41

http://www.urjc.es

www.urjc.es

Evaluation I: Comprehensibility (reason in presence of vague concepts)

• Reason about various scenarios simultaneously (or not).

1 % Hotel with 8 rooms - only the size of 3 of them is known.

2 room(r1). room(r2). room(r3). room(r4).

3 room(r5). room(r6). room(r7). room(r8).

4 size(r1, 25). size(r2, 5). size(r3, 15).

5 % Uncertain whether rooms of 10 to 20 m2 are small or not.

6 evidence(Room, small) :- size(Room,Size), Size#<10.

7 -evidence(Room, small) :- size(Room,Size), Size#>20.

8 % Explicit evidence for / against or generate two models.

9 small(Room) :- evidence(Room,small).

10 -small(Room) :- -evidence(Room,small).

11 small(Room) :- not evidence(Room,small), not -small(Room).

12 -small(Room) :- not -evidence(Room,small), not small(Room).

13 % Inferring conclusions from evidence and/or assumptions.

14 room_is(Room,big) :- room(Room), -small(Room).

15 room_is(Room,small) :- room(Room), small(Room).

• For ?- room_is(Room,Size):

• s(CASP) returns 14 partial
models.

• clingo returns 64 models.

Considering 16 rooms
• s(CASP) returns 30 partial models.

• clingo returns 16384 models.

This exponential explosion in the
models generated by clingo...

... reduces the comprehensibility.

URJC | Centre for Intelligent Information Technologies 34/41

http://www.urjc.es

www.urjc.es

Evaluation II: Geometrical and non-geometrical information.

(a) Duplex_Q1.html (b) Duplex_Q2.html (c) Office_Q1.html (d) Office_Q2.html

Query Duplex Q1: The doors are in green and the rest of the objects are in blue.

URJC | Centre for Intelligent Information Technologies 35/41

http://www.urjc.es
http://platon.etsii.urjc.es/~jarias/papers/spatial-iclp22/Duplex_Q1.html
http://platon.etsii.urjc.es/~jarias/papers/spatial-iclp22/Duplex_Q2.html
http://platon.etsii.urjc.es/~jarias/papers/spatial-iclp22/Office_Q1.html
http://platon.etsii.urjc.es/~jarias/papers/spatial-iclp22/Office_Q2.html

www.urjc.es

Evaluation II: Geometrical and non-geometrical information.

(a) Duplex_Q1.html (b) Duplex_Q2.html (c) Office_Q1.html (d) Office_Q2.html

Query Duplex Q2: imposes the constraints Ya#<-4 to select certain doors, and Y#>=-7, Y#<-4

to create a space (unbounded in the axis x and z) that defines a slice of the model.

URJC | Centre for Intelligent Information Technologies 35/41

http://www.urjc.es
http://platon.etsii.urjc.es/~jarias/papers/spatial-iclp22/Duplex_Q1.html
http://platon.etsii.urjc.es/~jarias/papers/spatial-iclp22/Duplex_Q2.html
http://platon.etsii.urjc.es/~jarias/papers/spatial-iclp22/Office_Q1.html
http://platon.etsii.urjc.es/~jarias/papers/spatial-iclp22/Office_Q2.html

www.urjc.es

Evaluation II: Geometrical and non-geometrical information.

(a) Duplex_Q1.html (b) Duplex_Q2.html (c) Office_Q1.html (d) Office_Q2.html

Constraints can be used in s(CASP) to reason about unbounded spaces

• Finer constraints, such as Ya#<-4.002, can be used without performance impact.

• That is in general not the case with other ASP systems.

URJC | Centre for Intelligent Information Technologies 35/41

http://www.urjc.es
http://platon.etsii.urjc.es/~jarias/papers/spatial-iclp22/Duplex_Q1.html
http://platon.etsii.urjc.es/~jarias/papers/spatial-iclp22/Duplex_Q2.html
http://platon.etsii.urjc.es/~jarias/papers/spatial-iclp22/Office_Q1.html
http://platon.etsii.urjc.es/~jarias/papers/spatial-iclp22/Office_Q2.html

www.urjc.es

Evaluation II: Geometrical and non-geometrical information.

(a) Duplex_Q1.html (b) Duplex_Q2.html (c) Office_Q1.html (d) Office_Q2.html

Query Office Q1/Q2: selects objects of type IfcBeam in the Architecture model that are not
covered by objects in the Structural BIM model.

(c) shows the objects that intersect the beam. (d) shows the uncovered parts drawn in red.

URJC | Centre for Intelligent Information Technologies 35/41

http://www.urjc.es
http://platon.etsii.urjc.es/~jarias/papers/spatial-iclp22/Duplex_Q1.html
http://platon.etsii.urjc.es/~jarias/papers/spatial-iclp22/Duplex_Q2.html
http://platon.etsii.urjc.es/~jarias/papers/spatial-iclp22/Office_Q1.html
http://platon.etsii.urjc.es/~jarias/papers/spatial-iclp22/Office_Q2.html

www.urjc.es

Evaluation II: Geometrical and non-geometrical information.

(a) Duplex_Q1.html (b) Duplex_Q2.html (c) Office_Q1.html (d) Office_Q2.html

Performance Query Office Q1/Q2

• Finds the first beam with uncovered parts in only 0.104 sec.

• Selects 691 beams out of 3639 objects in the architecture model and detected 511 beams
not covered by the more than 1300 objects in the structure model in 48 sec.

URJC | Centre for Intelligent Information Technologies 35/41

http://www.urjc.es
http://platon.etsii.urjc.es/~jarias/papers/spatial-iclp22/Duplex_Q1.html
http://platon.etsii.urjc.es/~jarias/papers/spatial-iclp22/Duplex_Q2.html
http://platon.etsii.urjc.es/~jarias/papers/spatial-iclp22/Office_Q1.html
http://platon.etsii.urjc.es/~jarias/papers/spatial-iclp22/Office_Q2.html

www.urjc.es

Evaluation III: Explainability of the inferred conclusions.

URJC | Centre for Intelligent Information Technologies 36/41

http://www.urjc.es

www.urjc.es

Evaluation III: Explainability of the inferred conclusions.

URJC | Centre for Intelligent Information Technologies 36/41

http://www.urjc.es

www.urjc.es

Conclusions

• We have highlighted the advantages of a well-founded approach to:

• Represent geometrical and non-geometrical building information
(including specifications, codes, and/or guidelines) as digital models.

• Handle changes to the models during their design, construction,
and/or facility time (removing, adding, or changing objects and
properties).

• The use of CLP, and more specifically s(CASP), makes it possible to:

• Realize commonsense reasoning including geometrical data.
• Represent knowledge involving vague and/or unknown information.

Future work

• Shift from BIM verification to BIM refinement.

• Develop non-monotonic model refinement methods.

• Integrate logical reasoning in BIM Software.

URJC | Centre for Intelligent Information Technologies 37/41

http://www.urjc.es

www.urjc.es

Conclusions

• We have highlighted the advantages of a well-founded approach to:

• Represent geometrical and non-geometrical building information
(including specifications, codes, and/or guidelines) as digital models.

• Handle changes to the models during their design, construction,
and/or facility time (removing, adding, or changing objects and
properties).

• The use of CLP, and more specifically s(CASP), makes it possible to:

• Realize commonsense reasoning including geometrical data.
• Represent knowledge involving vague and/or unknown information.

Future work

• Shift from BIM verification to BIM refinement.

• Develop non-monotonic model refinement methods.

• Integrate logical reasoning in BIM Software.

URJC | Centre for Intelligent Information Technologies 37/41

http://www.urjc.es

www.urjc.es

Explainable AI w/ Default Rules: FOLD Family of Algorithms.
Gopal Gupta’s lab (specially Farhad Shakerin, and Huaduo Wang).

URJC | Centre for Intelligent Information Technologies 38/41

http://www.urjc.es

www.urjc.es

Explainable AI w/ Default Rules

• Idea is to learn rules from data, i.e., express patterns in data as rules.

• These rules are represented as default rules with exceptions.

• Since we use default rules, our representation of knowledge learned is
very close to how humans will represent, understand and learn patterns
from data.

• Many advantages:

• Unlike other Machine Learning techniques, distinguishes noise
from exception.

• Represents concepts with fewer number of rules.
• Supported by a powerful formalism (Answer Set Programming).

URJC | Centre for Intelligent Information Technologies 39/41

http://www.urjc.es

www.urjc.es

FOLD Family of Algorithms [Gupta et al. 2023]

• FOLD family of algorithms are distinct machine learning algorithms

• FOLD, FOLD-R, LIME-FOLD, SHAP-FOLD... [Shakerin and Gupta 2019]

• FOLD-R++ algorithm: Performs binary classification [Wang and Gupta 2022a]

• both categorical and numerical data
• no data prep required, uses prefix sum computation for fast execution;
• competitive with XGBoost and Neural Networks;

• FOLD-RM algorithm: Performs multi-category classification [Wang et al. 2022]

• requires no data preparation; uses prefix sum computation for fast execution;
• competitive with XGBoost and Neural Networks;

• FOLD-LTR: Learning to rank, but explainable

FOLD-SE
Improved FOLD-R++ and FOLD-RM with scalable interpretability. [Wang and Gupta 2022b]

URJC | Centre for Intelligent Information Technologies 40/41

http://www.urjc.es

www.urjc.es

Current s(CASP)
applications/users

• Legal Industry.

• Architecture, Engineering
and Construction.

• Healthcare Industry.

• Avionics Domain.

...more are still to come.

URJC | Centre for Intelligent Information Technologies 41/41

http://www.urjc.es

www.urjc.es

Current s(CASP)
applications/users

• Legal Industry.

• Architecture, Engineering
and Construction.

• Healthcare Industry.

• Avionics Domain.

...more are still to come.

TH
AN

KS!

URJC | Centre for Intelligent Information Technologies 41/41

http://www.urjc.es

References www.urjc.es

Bibliography I

[1] Arias, J., Chen, Z., Carro, M., and Gupta, G. (2019). Modeling and Reasoning in Event
Calculus Using Goal-Directed Constraint Answer Set Programming. In: Pre-Proc. of
the 29th Int’l. Symposium on Logic-based Program Synthesis and Transformation.

[2] Arias, Joaqúın, Carro, Manuel, Chen, Zhuo, and Gupta, Gopal (2020). Justifications for
Goal-Directed Constraint Answer Set Programming. In: Proceedings 36th International
Conference on Logic Programming (Technical Communications). Vol. 325. EPTCS. Open
Publishing Association, pp. 59–72. doi: 10.4204/EPTCS.325.12.

[3] Arias, Joaqúın, Carro, Manuel, Salazar, Elmer, Marple, Kyle, and Gupta, Gopal (2018).
Constraint Answer Set Programming without Grounding. In: Theory and Practice of
Logic Programming 18.3-4, pp. 337–354. doi: 10.1017/S1471068418000285.

URJC | Centre for Intelligent Information Technologies 42/41

http://www.urjc.es
https://doi.org/10.4204/EPTCS.325.12
https://doi.org/10.1017/S1471068418000285

References www.urjc.es

Bibliography II

[4] Arias, Joaqúın, Moreno-Rebato, Mar, Rodriguez-Garćıa, Jose A., and Ossowski, Sascha
(2021). Modeling Administrative Discretion Using Goal-Directed Answer Set
Programming. In: Advances in Artificial Intelligence, CAEPIA 20/21. Vol. 12882. LNCS.
Springer, pp. 258–267. doi: 10.1007/978-3-030-85713-4_25.

[5] Arias, Joaqúın, Törmä, Seppo, Carro, Manuel, and Gupta, Gopal (2022). Building
Information Modeling Using Constraint Logic Programming. In: Theory and Practice
of Logic Programming 22.5, pp. 723–738. doi: 10.1017/S1471068422000138. url:
https://doi.org/10.1017/S1471068422000138.

[6] Balduccini, Marcello, Magazzeni, Daniele, and Maratea, Marco (2016). PDDL+ Planning
via Constraint Answer Set Programming. In: 9th Workshop on Answer Set
Programming and Other Computing Paradigms. http://arxiv.org/abs/1609.00030.

URJC | Centre for Intelligent Information Technologies 43/41

http://www.urjc.es
https://doi.org/10.1007/978-3-030-85713-4_25
https://doi.org/10.1017/S1471068422000138
https://doi.org/10.1017/S1471068422000138

References www.urjc.es

Bibliography III

[7] Basu, Kinjal, Varanasi, Sarat, Shakerin, Farhad, Arias, Joaquin, and Gupta, Gopal (2021a).
Knowledge-driven Natural Language Understanding of English Text and its
Applications. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35.
14, pp. 12554–12563. url:
https://ojs.aaai.org/index.php/AAAI/article/view/17488.

[8] Basu, Kinjal, Wang, Huaduo, Dominguez, Nancy, Li, Xiangci, Li, Fang,
Varanasi, Sarat Chandra, and Gupta, Gopal (2021b). CASPR: A Commonsense
Reasoning-based Conversational Socialbot. In: 4th Proceedings of Alexa Prize (Alexa
Prize 2021).

[9] BuildingSMART (2020). Industry Foundation Classes (IFC). Available at:
https://technical.buildingsmart.org/standards/ifc/. Accessed on July, 2020.

[10] Cabalar, Pedro, Fandinno, Jorge, and Fink, Michael (2014). Causal Graph Justifications
of Logic Programs. In: Theory and Practice of Logic Programming 14.4-5, pp. 603–618.
doi: 10.1017/S1471068414000234.

URJC | Centre for Intelligent Information Technologies 44/41

http://www.urjc.es
https://ojs.aaai.org/index.php/AAAI/article/view/17488
https://technical.buildingsmart.org/standards/ifc/
https://doi.org/10.1017/S1471068414000234

References www.urjc.es

Bibliography IV

[11] Chen, Zhuo, Marple, Kyle, Salazar, Elmer, Gupta, Gopal, and Tamil, Lakshman (2016). A
Physician Advisory System for Chronic Heart Failure Management Based on
Knowledge Patterns. In: Theory and Practice of Logic Programming 16.5-6, pp. 604–618.
doi: 10.1017/S1471068416000429.

[12] Chittaro, Luca and Montanari, Angelo (1996). Efficient Temporal Reasoning in the
Cached Event Calculus. In: Computational Intelligence 12, pp. 359–382. doi:
10.1111/j.1467-8640.1996.tb00267.x.

[13] Cobbe, Jennifer (2019). Administrative law and the machines of government: judicial
review of automated public-sector decision-making. In: Legal Studies 39.4,
pp. 636–655.

[14] Fox, Maria and Long, Derek (2002). PDDL+: Modeling continuous time dependent
effects. In: Proceedings of the 3rd International NASA Workshop on Planning and
Scheduling for Space. Vol. 4, p. 34.

URJC | Centre for Intelligent Information Technologies 45/41

http://www.urjc.es
https://doi.org/10.1017/S1471068416000429
https://doi.org/10.1111/j.1467-8640.1996.tb00267.x

References www.urjc.es

Bibliography V

[15] Gelfond, Michael (1994). Logic programming and reasoning with incomplete
information. In: Annals of mathematics and artificial intelligence 12.1, pp. 89–116.

[16] Gelfond, Michael and Lifschitz, Vladimir (1988). The Stable Model Semantics for Logic
Programming. In: 5th International Conference on Logic Programming, pp. 1070–1080.
doi: 10.2307/2275201. url:
http://www.cse.unsw.edu.au/~cs4415/2010/resources/stable.pdf.

[17] — (1993). Representing Action and Change by Logic Programs. In: The Journal of
Logic Programming 17.2-4, pp. 301–321.

[18] Gupta, Gopal, Wang, Huaduo, Basu, Kinjal, Shakerin, Farhad, Salazar, Elmer,
Varanasi, Sarat Chandra, Padalkar, Parth, and Dasgupta, Sopam (2023). Logic-based
explainable and incremental machine learning. In: Prolog: The Next 50 Years. Springer,
pp. 346–358.

URJC | Centre for Intelligent Information Technologies 46/41

http://www.urjc.es
https://doi.org/10.2307/2275201
http://www.cse.unsw.edu.au/~cs4415/2010/resources/stable.pdf

References www.urjc.es

Bibliography VI

[19] Hall, Brendan, Varanasi, Sarat Chandra, Fiedor, Jan, Arias, Joaqúın, Basu, Kinjal,
Li, Fang, Bhatt, Devesh, Driscoll, Kevin, Salazar, Elmer, and Gupta, Gopal (2021).
Knowledge-Assisted Reasoning of Model-Augmented System Requirements with
Event Calculus and Goal-Directed Answer Set Programming. In: Proc. 8th Workshop
on Horn Clause Verification and Synthesis.

[20] Holzbaur, C. (1995). OFAI CLP(Q,R) Manual, Edition 1.3.3. Tech. rep. TR-95-09.
Vienna: Austrian Research Institute for Artificial Intelligence.

[21] Lee, H., Lee, J.K., Park, S., and Kim, I. (2016). Translating building legislation into a
computer-executable format for evaluating building permit requirements. en. In:
Automation in Construction 71, pp. 49–61. doi: 10.1016/j.autcon.2016.04.008.

[22] Lee, Joohyung and Meng, Yunsong (2013). Answer Set Programming Modulo Theories
and Reasoning about Continuous Changes. In: 23rd Int’l. Joint Conference on Artificial
Intelligence, pp. 990–996.

URJC | Centre for Intelligent Information Technologies 47/41

http://www.urjc.es
https://doi.org/10.1016/j.autcon.2016.04.008

References www.urjc.es

Bibliography VII

[23] Lee, Joohyung and Palla, Ravi (2009). System F2LP – Computing Answer Sets of
First-Order Formulas. In: Logic Programming and Nonmonotonic Reasoning. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 515–521. doi:
10.1007/978-3-642-04238-6_51.

[24] — (2012). Reformulating the Situation Calculus and the Event Calculus in the
General Theory of Stable Models and in Answer Set Programming. In: Journal of
Artificial Intelligence Research 43, pp. 571–620.

[25] Li, Beidi, Teizer, Jochen, and Schultz, Carl (2020). Non-monotonic Spatial Reasoning
for Safety Analysis in Construction. In: Proceedings of the 22nd International
Symposium on Principles and Practice of Declarative Programming, pp. 1–12.

[26] Marple, Kyle, Salazar, Elmer, and Gupta, Gopal (2017). Computing Stable Models of
Normal Logic Programs Without Grounding. In: arXiv 1709.00501. arXiv: 1709.00501.
url: http://arxiv.org/abs/1709.00501.

URJC | Centre for Intelligent Information Technologies 48/41

http://www.urjc.es
https://doi.org/10.1007/978-3-642-04238-6_51
https://arxiv.org/abs/1709.00501
http://arxiv.org/abs/1709.00501

References www.urjc.es

Bibliography VIII

[27] Mart́ınez, Agust́ı Cerrillo i (2019). El derecho para una inteligencia artificial centrada
en el ser humano y al servicio de las instituciones: Presentación del monográfico. In:
IDP: Revista de Internet, Derecho y Politica 30.

[28] Morris, Jason (2021). Constraint answer set programming as a tool to improve
legislative drafting: a rules as code experiment. In: ICAIL. ACM, pp. 262–263.

[29] Moyle, Steve, Allott, Nicholas, and Manslow, John (2023). Modelling Cyber Defenses
using s (CASP). In: ICLP’23 Workshop on Goal-directed Execution of Answer Set
Programs.

[30] Mueller, Erik T. (2008). Chapter 17: Event Calculus. In: Handbook of Knowledge
Representation. Ed. by Frank van Harmelen, Vladimir Lifschitz, and Bruce Porter. Vol. 3.
Foundations of AI. Elsevier, pp. 671 –708. doi: 10.1016/S1574-6526(07)03017-9.

URJC | Centre for Intelligent Information Technologies 49/41

http://www.urjc.es
https://doi.org/10.1016/S1574-6526(07)03017-9

References www.urjc.es

Bibliography IX

[31] Pauwels, P., Van Deursen, D., Verstraeten, R., De Roo, J., De Meyer, R., Van
De Walle, R., and Van Campenhout, J. (2011). A semantic rule checking environment
for building performance checking. en. In: Automation in Construction 20.5,
pp. 506–518. doi: 10.1016/j.autcon.2010.11.017.

[32] Pontelli, Enrico, Son, Tran Cao, and El-Khatib, Omar (2009). Justifications for Logic
Programs under Answer Set Semantics. In: Theory and Practice of Logic Programming
9.1, pp. 1–56. doi: 10.1017/S1471068408003633.

[33] Ramakrishna, Shashishekar, Górski, Lukasz, and Paschke, Adrian (2016). A dialogue
between a lawyer and computer scientist: the evaluation of knowledge
transformation from legal text to computer-readable format. In: Applied Artificial
Intelligence 30.3, pp. 216–232.

[34] Schulz, Claudia and Toni, Francesca (2016). Justifying Answer Sets Using
Argumentation. In: Theory and Practice of Logic Programming 16.1, pp. 59–110. doi:
10.1017/S1471068414000702.

URJC | Centre for Intelligent Information Technologies 50/41

http://www.urjc.es
https://doi.org/10.1016/j.autcon.2010.11.017
https://doi.org/10.1017/S1471068408003633
https://doi.org/10.1017/S1471068414000702

References www.urjc.es

Bibliography X

[35] Sergot, Marek J., Sadri, Fariba, Kowalski, Robert A., Kriwaczek, Frank, Hammond, Peter,
and Cory, H Terese (1986). The British Nationality Act as a logic program. In:
Communications of the ACM 29.5, pp. 370–386.

[36] Shakerin, Farhad and Gupta, Gopal (2019). Induction of Non-Monotonic Logic
Programs to Explain Boosted Tree Models Using LIME. In: AAAI 2019,
pp. 3052–3059. doi: 10.1609/aaai.v33i01.33013052.

[37] Shanahan, Murray (1999). The Event Calculus Explained. In: Artificial Intelligence
Today. Springer, pp. 409–430. doi: 10.1007/3-540-48317-9_17.

[38] — (2000). An Abductive Event Calculus Planner. In: The Journal of Logic
Programming 44.1-3, pp. 207–240.

[39] Solé, Juli Ponce (2019). Inteligencia artificial, Derecho administrativo y reserva de
humanidad: algoritmos y procedimiento administrativo debido tecnológico. In:
Revista general de Derecho administrativo 50.

URJC | Centre for Intelligent Information Technologies 51/41

http://www.urjc.es
https://doi.org/10.1609/aaai.v33i01.33013052
https://doi.org/10.1007/3-540-48317-9_17

References www.urjc.es

Bibliography XI

[40] Solihin, Wawan (2015). A simplified BIM data representation using a relational
database schema for an efficient rule checking system and its associated rule
checking language. PhD thesis. Georgia Institute of Technology.

[41] Wang, Huaduo and Gupta, Gopal (2022a). FOLD-R++: A Scalable Toolset for
Automated Inductive Learning of Default Theories from Mixed Data. In:
International Symposium on Functional and Logic Programming. Springer, pp. 224–242.
doi: 10.1007/978-3-030-99461-7_13.

[42] — (2022b). FOLD-SE: Scalable Explainable AI. In: arXiv preprint arXiv:2208.07912.
[43] Wang, Huaduo, Shakerin, Farhad, and Gupta, Gopal (2022). FOLD-RM: A scalable,

efficient, and explainable inductive learning algorithm for multi-category
classification of mixed data. In: Theory and Practice of Logic Programming 22.5,
pp. 658–677. doi: 10.1017/S1471068422000205.

URJC | Centre for Intelligent Information Technologies 52/41

http://www.urjc.es
https://doi.org/10.1007/978-3-030-99461-7_13
https://doi.org/10.1017/S1471068422000205

References www.urjc.es

Bibliography XII

[44] Zhang, Chi, Beetz, Jakob, and Vries, Bauke de (2018). BimSPARQL: Domain-specific
functional SPARQL extensions for querying RDF building data. In: Semantic Web 9.6,
pp. 829–855.

[45] Zhang, S., Teizer, J., Lee, J.K., Eastman, C.M., and Venugopal, M. (2013). Building
Information Modeling (BIM) and Safety: Automatic Safety Checking of
Construction Models and Schedules. en. In: Automation in Construction 29,
pp. 183–195. doi: 10.1016/j.autcon.2012.05.006.

URJC | Centre for Intelligent Information Technologies 53/41

http://www.urjc.es
https://doi.org/10.1016/j.autcon.2012.05.006

	
	
	
	
	Modeling Administrative Discretion Using Goal-Directed Answer Set Programming. Joaquín Arias, Mar Moreno-Rebato, José A. Rodríguez-García, and Sascha Ossowski (2021).
	
	
	

	Building Information Modeling Using Constraint Logic Programming. Joaquín Arias, Seppo Törmä, Manuel Carro, and Gopal Gupta (2022).
	
	
	
	
	

	Explainable AI w/ Default Rules: FOLD Family of Algorithms. Gopal Gupta's lab (specially Farhad Shakerin, and Huaduo Wang).
	Appendix
	References

