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Introduction

A short tutorial on s(CASP)

• Highlighting novel aspects and its design.

• s(CASP) is a goal-directed top-down solver for Constraints Answer Set Programs.
• It avoids the grounding phase:

• It can constraint variables that, as in CLP, are kept during execution and in answer sets.

• Additionally, it generates human-understandable justifications.
• s(CASP) is implemented in Prolog (Ciao1 and SWI Prolog2)
• It has been used in several applications:

• Including medical advisors, avionic, legal reasoner, XAI, and natural language processing.

1Available at http://ciao-lang.org/.
2Available at https://www.swi-prolog.org/.

http://ciao-lang.org/
https://www.swi-prolog.org/
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Applications

Applications (mainly on commonsense reasoning):
• Event Calculus Reasoner. [Arias et al. 2019]

• Model real-word avionics systems. [Hall et al. 2021]

• Explainable Artificial Intelligence (XAI). [Arias et al. 2020]

• Medical advice system. [Chen et al. 2016]
• Inductive Logic Programming. [Shakerin and Gupta 2019]
• Generation of concurrent imperatives programs. [Varanasi et al. 2019]

• Natural language understanding systems. [Basu et al. 2021a]

• CASPR: chatbot for the “Alexa Grand Challenge 4”. [Basu et al. 2021b]

• Coding rule 34 of the Singapore Bar. [Morris 2021]

• Administrative and judicial discretion reasoner. [Arias et al. 2021]

• ... and others (visit GDE’21 Workshop).
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Installation under Ciao and SWI-Prolog

• The source code of s(CASP) is available at:
• https://gitlab.software.imdea.org/ciao-lang/sCASP for Ciao.
• https://github.com/JanWielemaker/sCASP for SWI-Prolog.

• Installation:
• As a standalone application: the installation creates an executable called scasp:

scasp --help_all

• Online: visit SWISH (https://swish.swi-prolog.org/) to run s(CASP) in your browser.

https://gitlab.software.imdea.org/ciao-lang/sCASP
https://github.com/JanWielemaker/sCASP
https://swish.swi-prolog.org/
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Getting Started: Bindings

• s(CASP) can return models with the bindings for negated calls:
• Using the disequality constraint solver...

Example 1 (p.pl3)

1 p(a).

For the query ?- not p(X), s(CASP) returns {not p(X | {X \= a})}
X \= a

• and a solver for linear constraints on rationals (and reals).

Example 2 (p2.pl)

1 p(X) :- X #> 0.

For the query ?- not p(X), s(CASP) returns {not p(X | {X #=< 0})}
X #=< 0

3Examples available at http://platon.etsii.urjc.es/˜jarias/papers/scasp-gde21/

http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/p.pl
http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/p2.pl
http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/
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Getting Started: Uninterpreted Functions

• Under conventional ASP, lists, such as [f(a)|Rest], the grounded program can be infinite.

Example 3 (member.pl)

1 member(X, [X|Xs]).
2 member(X, [_|Xs]):- member(X, Xs).
3 list([1,2,3,4,5]).

4 ?- list(A), not member(B, A).

The query is part of the program (line 4) and returns:

{ list([1,2,3,4,5]),

not member(B | {B , 1,B , 2,B , 3,B , 4,B , 5}, [1,2,3,4,5]),
not member(B | {B , 1,B , 2,B , 3,B , 4,B , 5}, [2,3,4,5]),
not member(B | {B , 1,B , 2,B , 3,B , 4,B , 5}, [3,4,5]),
not member(B | {B , 1,B , 2,B , 3,B , 4,B , 5}, [4,5]),
not member(B | {B , 1,B , 2,B , 3,B , 4,B , 5}, [5]),
not member(B | {B , 1,B , 2,B , 3,B , 4,B , 5}, []) }

A = [1,2,3,4,5], B , 1, B , 2, B , 3, B , 4, B , 5

http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/member.pl
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Getting Started: Stable Models

• s(CASP) is based on stable model semantics [Gelfond and Lifschitz 1988] and supports
non-stratified negation.

Example 4 (weekend.pl)

1 opera(saturday) :- not home(saturday).

2 home(saturday) :- not opera(saturday).

3 dinner(sunday).

For the query ?- opera(saturday) it returns {opera(saturday),not home(saturday)}

For the query ?- home(saturday) it returns {home(saturday),not opera(saturday)}

For the query ?- dinner(sunday) it returns {dinner(sunday)}

For the query ?- opera(saturday),home(saturday) it returns no models.

• Additionally, s(CASP) supports default and classical negation:
• not opera(saturday): no evidence that Bob goes to the opera (we cannot prove it).
• -opera(saturday): explicit evidence that Bob does not go to the opera (there is a proof).

http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/weekend.pl
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Tuning the Output of Partial Answer Sets

• s(CASP) provides a directive to select which atoms should appear in the partial model:

Example 5 (weekend_show.pl)

Including the following directive in weekend.pl

1 #show opera/1, home/1, dinner/1.

For the query ?- opera(saturday) it returns {opera(saturday)}

Negated atoms can also be selected, e.g., #show not home/1,-opera/1 is also valid.

• Denials: :- p,q means that p ∧ q cannot be true in any model.
• Olon rules: r :- q,not r forces that every model to satisfy ¬q ∨ r.

Example 6 (olon.pl)

1 p :- not q. 2 q :- not p. 3 r :- not r.

The compiler introduces the denial :- not r and therefore, there are no models.

http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/weekend_show.pl
http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/weekend.pl
http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/olon.pl
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Tuning the Output of Partial Answer Sets (cont.)

Example 7 (opera.pl)

1 opera(D) :- not home(D). % A day D, Bob either goes to the opera...

2 home(D) :- not opera(D). % ... or stays home.

3 home(monday). % On Monday, Bob stays at home.

4

5 :- baby(D), opera(D). % When Bob 's best friend comes with her baby, it is
6 % not a good idea to take the baby to the opera.

7 baby(tuesday). % They come on Tuesday.

8

9 ?- opera(D). % QUERY: When might Bob go to the opera?

The denial in line 5 expresses that baby(D) ∧ opera(D) cannot be simultaneously true for any
value of D, so it returns D \= monday,D \=tuesday

• For debugging purposes, s(CASP) provides flags to disable consistency checks:
• --no_olon disables the consistency checking due to olon rules.
• --no_nmr disables consistency checking for all non-monotonic rules.

http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/opera.pl
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Tuning the Output of Partial Answer Sets (cont.)

• A Partial Answer Set is a partial model with a specific binding of the query variables.

Example 8 (member.pl in Example 3)

For the query ?- list(A),member(B,A), it returns 5 answers sets, one for each binding of B:
• For B=1 { list([1,2,3,4,5]),member(1,[1,2,3,4,5]) }

• For B=2 { list([1,2,3,4,5]),member(2,[1,2,3,4,5]),member(2,[2,3,4,5]) }

• For B=3 { list([1,2,3,4,5]),member(3,[1,2,3,4,5]),member(3,[2,3,4,5]),. . . }

• For B=4 { list([1,2,3,4,5]),member(4,[1,2,3,4,5]),member(4,[2,3,4,5]),. . . }

• For B=5 { list([1,2,3,4,5]),member(5,[1,2,3,4,5]),member(5,[2,3,4,5]),. . . }

• s(CASP) provides flags to control the number of partial answer sets to be generated:
• -sN or -nN return the first N answers sets.
• -s0 or -n0 return all the possible answers sets.

http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/member.pl


Introduction

Applications

Installation

Getting start
Bindings
Uninterpreted
functions
Stable models

Tune output

Justifications
In NL / HTML

Dual (in NL)

DCC

Future Work

10 / 15

Tuning the Output of Partial Answer Sets (cont.)
• s(CASP) includes CLP(Q) [Holzbaur 1995], a solver for linear constraints on the rationals (for

soundness reasons), and provides a flag:
• -r[=d] to output rationals as floating-point numbers with d decimal places.

Example 9 (rationals.pl)

1 s(X,Y) :- X #= Y * 7/53.

For the query ?- s(X,4.35) it returns X=609/1060

... invoking scasp -r=3 rationals.pl it returns X=0.574

http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/rationals.pl
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Justifications
• The top-down strategy of s(CASP) generates minimal justification trees.

• s(CASP) provides flags to control which literals should appear in them:
• --mid only displays the user-defined predicates.
• --long displays all predicates, including forall/2 used to check denials.
• --short only displays the annotated literals.

• Also, --neg includes the default-negated atoms, while --pos does not.

Example 10 (opera.pl in Example 7)

The invocation scasp --tree opera.pl generates:

JUSTIFICATION_TREE:

assume(opera(D | {D \= monday,D \= tuesday})):-
not home(D | {D \= monday,D \= tuesday}).

denial :-

not o_chk_1 :-

not baby(Var1 | {Var1 \= tuesday}),
baby(tuesday),

assume(not opera(tuesday)) :-

home(tuesday).

http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/opera.pl
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Justifications in Natural Language (NL)

Example 11 (opera.pl and opera.pred cont. Example 10)

1 #pred opera(D) :: 'Bob goes to the opera on (D:day) '.
2 #pred not home(D) :: 'Bob does not stay at home on (D) '.

The call scasp --tree --human opera.pl opera.pred generates

JUSTIFICATION_TREE:

we assume that Bob goes to the opera on a day D not equal monday, nor tuesday, because

Bob does not stay at home on D not equal monday, nor tuesday.

The global constraints hold, because

the global constraint number 1 holds, because

there is no evidence that 'baby ' holds (for Var1), with Var1 not equal tuesday, and
'baby ' holds (for tuesday), and
we assume that there is no evidence that Bob goes to the opera on the day tuesday, because

'home ' holds (for tuesday).

• Additionally, s(CASP) provides a flag to generate expandable justification tree in HTML:
• By adding --html=bob, it generates bob.html.

http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/opera.pl
http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/opera.pred
http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/bob.html
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Dual Program (also in NL)
• The dual program expresses the constructive negation of each predicate.

• For each ith literal in the body of a clause, it generates a clause with its “dual” literal.
• To avoid redundant answers, every ith clause includes calls to any jth literal with j < i .

Example 12

The dual of the clause h(X,Y) :- r(X),not s(X,Y),q(Y) is:

1 not h(X,Y) :- not r(X).

2 not h(X,Y) :- r(X), s(X,Y).

3 not h(X,Y) :- r(X), not s(X,Y), not q(Y).

• s(CASP) provides flags to modify the generation of the dual program and to inspect it:
• -d or --plaindual generate duals with single-goal clauses.
• --code output the dual program compiled by s(CASP)

(which can be modified and loaded using -c or --compiled.)

Example 13 (opera.pl and opera.pred cont. Example 11)

Invoking scasp --code --human opera.pl opera.pred it provides the natural language code.

http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/opera.pl
http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/opera.pred
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Dynamic Consistency Check (DCC) – work in progress

• s(CASP) checks that a tentative partial model is consistent after the query.
• When the check fails, it backtracks to search other alternatives.
• The goal of DCC [Marple and Gupta 2014] is to check the denials as soon as the atoms involved

are added to the tentative partial model.

Example 14 (hamiltonian.pl)

1 #show chosen/2.

2 reachable(V) :- chosen(V, a).

3 reachable(V) :- chosen(V,U), reachable(U).

4 % Choose or not an edge of the graph.

5 chosen(U,V) :- edge(U,V), not other(U,V).

6 other(U,V) :- edge(U,V), not chosen(U,V).

7 % Every vertex must be reachable.

8 :- vertex(U), not reachable(U).

9 % Do not choose edges to/from the same vertex

10 :- chosen(U,W), U \= V, chosen(V,W).

11 :- chosen(W,U), U \= V, chosen(W,V).

12 ?- reachable(a).

For this program using the graph with 4 vertices and 3 Hamiltonian cycles in graph.pl:
• Without DCC: the evaluation takes 8.266s.
• With DCC: the evaluation takes only 1.215s. A speed up of 6.8

http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/hamiltonian.pl
http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/graph.pl
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Future Work

• Complete DCC implementation, use program analysis to optimize compilation of DCC rules.
• Improve the generation of dual programs using dependency analysis.
• Reduce interpreting overhead applying partial evaluation and better compilation techniques.
• Optimize the implementation of the c-forall algorithm using Mod TCLP [Arias and Carro 2019a].

... there are four alternatives: default, all_c_forall, prev_forall, and sasp_forall.

• Explore the use of Mod TCLP, and ATCLP [Arias and Carro 2019b] to:
• Collect minimal partial models, increasing performance and readability.
• Handle positive variant loops. Currently they are halted; solutions can be missed.

• This behavior can be disabled by adding --variant but, it can lead to loops.

• Improve the constraint solver disequality to handle some pending cases.
• Flags -w or --warning detect and warn in case of unsupported constraint or variant loops.

• Enhance its integration with Ciao and SWI-Prolog debuggers.
• Flags v, v0, v1, and v2 trace program evaluation.

If in doubt please contact mailto:joaquin.arias@urjc.es

mailto:joaquin.arias@urjc.es
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