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Abstract

Malware has become a major concern as the techniques used by the malicious actors

improve on an ongoing basis, e.g., by using metamorphic malware, which modifies

its own code to a semantic equivalent code. In parallel, anti-malware technologies

have advanced, resulting in different techniques for detecting or classifying malicious

programs. Even then, each technique has its limitations. For example, classic static

analysis is very vulnerable to code changes, dynamic analysis requires the code to be

executed in a specific environment and AI behavioral technology reports many false

positives, and it is easy to fool once its classification method has been analyzed. In this

work, we improve on static analysis approaches by including a metamorphic rules-

based technique, which transforms lines of code into semantic equivalents patterns

(reproducing what metamorphic malware does). The resulting tool, MDDect can de-

tect variations of malware (following certain metamorphic rules) based on given sig-

natures (patterns of code) that identify malicious behaviors or subroutines. Initially,

we implemented MDDect under Python, but to facilitate the extension of the tool with

new rules we re-implemented it under Prolog. To validate MDDect we use 4 exam-

ples, a (real) use case, and randomly generated programs including from zero to three

signatures between harmless code blocks. In the use case, we assume the existence of

a signature of a program written in Intel assembly that compromises the confidentiality

of the host by printing a file to stdout with potentially elevated privileges.
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Resumen

El malware se ha convertido en una de las principales preocupaciones, ya que las téc-

nicas utilizadas por los actores maliciosos mejoran continuamente. Un ejemplo del

resultado de estas técnicas es el malware metamórfico, que modifica su propio código

para convertirlo en un código semánticamente equivalente. Paralelamente, las tec-

nologías anti-malware también han avanzado, dando lugar a diferentes técnicas para

detectar o clasificar los programas maliciosos. Sin embargo, estas tecnologías tienen

sus limitaciones: el análisis estático clásico es muy vulnerable a estas modificaciones

de código, el análisis dinámico requiere que el código se ejecute en un entorno virtual,

y la tecnología de análisis de comportamiento basado en IA reporta muchos falsos pos-

itivos y es fácil de engañar una vez es analizado su método de clasificación, entre otras.

En este trabajo, mejoramos el enfoque de análisis estático al incluir una técnica basada

en reglas metamórficas, las cuales transforman las líneas de código a analizar según

patrones de equivalencias semánticas. La herramienta resultante, MDDect, puede de-

tectar variaciones de malware basándose en firmas almacenadas, es decir, patrones de

código que identifican comportamientos o subrutinas maliciosas. Inicialmente, im-

plementamos MDDect en Python, pero, para facilitar la extensión de la herramienta

con nuevas reglas, la reimplementamos en Prolog. Para validar MDDect utilizamos 4

ejemplos, un caso de uso (real) y programas generados aleatoriamente que incluyen

de cero a tres bloques de código maliciosos entre otros inofensivos. En el caso de

uso, suponemos la existencia de una firma de un programa escrito en ensamblador que

compromete la confidencialidad del huésped imprimiendo un archivo en salida están-

dar con privilegios potencialmente elevados.
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Chapter 1

Introduction

Malware is a piece of code or a program with potentially malicious intentions materi-
alized after its execution in a victim information system.

The race between malware and the development of methods to detect it has been going
on for a long time. Since the first antivirus programs in the 1980s, both sides have
advanced their methods. Those first antiviruses only scanned files in search of code
lines that matched with a set of lines identified as a virus (called signatures). Since
then, antivirus programs have been incorporated into a larger suite, called antimalware
solutions, which, in addition to scanning potentially infected files, also perform tasks
such as scanning processes, connections, etc.

Nowadays, with a new intent for economic gain and new technologies to use, this
race has taken on a new importance along with the nefarious impact of new malware.
Organizations of all kinds have suffered millions of dollars in losses, meanwhile, it has
never been easier and cheaper to launch a cyber attack. In addition, old methods based
on comparisons of strings or a list of instructions in a code called heuristic analysis now
can be easily evaded, as we can see in several demonstrations of bypassing antivirus
solutions modifying comments, the file’s name, or function names (Roberts 2022).

However, the growing significance of malware has led to a boost in research invest-
ment, resulting in the exploration of novel technologies. New methods such as machine
learning or natural language processing have improved malware detection (Singh and
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Singh 2021). Nonetheless, even though most research focuses on different applica-
tions of artificial intelligence, these methods tend to consume a lot of computational
resources and time for training and execution. Furthermore, malware can evade these
techniques with a high probability of success (Quertier et al. 2022).

Due to the drawbacks of AI solutions, a traditional approach based on heuristic static
analysis should not be discarded, but rather reformulated and adapted to the new era
to complement these new techniques and achieve more comprehensive and effective
protection. Following this line of thought, new solutions based on signature match-
ing with a slight twist are also being developed. Moreover, these solutions can even
achieve better results than the use of artificial intelligence.

This is the case of techniques using abstract interpretation and behavioral heuris-
tic analysis, i.e., analyzing the objective of a piece of software against a defined
set of malicious behaviors. One implementation is SAFE-PDF, a solution made to
identify malware embedded in PDF files (Jordan et al. 2018), based on the Scal-
able Analysis Framework for ECMAScript (Lee et al. 2012), or the experimental tool
SAFE (Christodorescu and Jha 2003), which method was to elevate the code to a rep-
resentation made of annotations before analyzing over those annotations. This last
technique may represent an application of a behavioral approach to static analysis as
early as 2003. SAFE was aimed specifically at the detection of metamorphic malware,
one of the major advances in malicious software development. This type of malware
can change its code, making it impossible to detect with heuristic analysis. It achieves
different versions of the same program undetectable to traditional techniques using
different methods. One of them is the transformation of one or more lines of code to
others that do the same function. These rules of equivalency between instructions are
called metamorphic rules.

A more recent application of abstract interpretation to metamorphic malware, in this
case, focused on the infer of their signatures and transformations, is MetaSign (Cam-
pion, Dalla Preda, and Giacobazzi 2021). This solution uses the same transformations
the malware uses to change its code to learn all the metamorphic rules it has used.
However, this project didn’t provide a direct implementation of software analysis.

We have created a tool based on this last technique, MMDect, which applies two sepa-
rate steps, namely generation and comparison, to establish the practicality of utilizing
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metamorphic transformations for software analysis since, if the malware has used a
known set of rules to mutate, it is possible to generate the original code from one
iteration of it.

While MetaSign was aimed at learning the metamorphic rules used by a given malware,
MMDect uses the same method of applying transformations but with the purpose of
detecting possible infected or malicious programs.

In the generation step, the program will obtain all the possible iterations of a piece
of software using all the stored applicable metamorphic rules. Then, in the compar-
ison step, it will compare each iteration against static signatures to effectively detect
metamorphic malware. As for the language used, the initial proposals were reduced
to two: Python, for its widespread use and ease of programming, and Prolog, for its
nature, completely integral with the use of rules and the power that this combina-
tion could bring. So we decided to use both: Python would be used to program a
common input and output controller, but the internal modules representing each phase
would be developed in both languages to test the initial hypothesis regarding Prolog’s
expressiveness and capability to generate various versions of a program by applying
metamorphic rules. The resulting tool, MMDect, is open-source and is available at
https://github.com/Lu-all/MMDect.

The structure of this paper is the following:

In Chapter 1 it is explained the context and aims of this work, along with research in a
similar area, including the work on which this technique is based. Chapter 2 explains
the theory on which MMDect is based more in-depth. Chapter 3 presents an extensive
description of the design of the tool, while Chapter 4 focuses on its implementation.
Chapter 5 details the evaluation process, by testing MDDect with several cases. Finally,
Chapter 6 summarizes the results obtained and suggests future lines of research.
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1.1. Objectives

1.1 Objectives

The principal objective of this work is to improve the security of IT systems by in-
creasing the ability to detect malware using metamorphic rules. In order to do so, we
have developed a static analyzer capable of detecting metamorphic malware.

While developing the analyzer, as we realized the rule-based structure of the code, we
became aware that a logic programming language, such as Prolog, would be ideal to
simplify the development of the tool. Thus, an additional goal of this work is to test
the advantages of applying this programming paradigm and, at the same time, extend
its use in the cybersecurity field.

As an additional objective, we wanted to probe the utility of signature-based analy-
sis in the detection of modern malware, as this approach is being neglected in favor
of experimental techniques, when, as mentioned in this paper, they are precisely the
perfect method to reduce the weaknesses of these new technologies. By using both
approaches, a better solution can be achieved than if either of them were discarded, so
traditional methods should not be discarded but adapted to the new times and further
improved.

1.2 Methodology

While researching metamorphic malware detection, we came across an intriguing tool
called MetaSign (Campion, Dalla Preda, and Giacobazzi 2021). This tool has the abil-
ity to learn the rules used by metamorphic malware to mutate. The theory behind
MetaSign is as simple as it is captivating: it applies the same rules used by malware
to reverse transformations, as these changes can occur in both directions. However,
MetaSign lacked an implementation that would allow direct analysis of the malware
using the acquired rules. This apparent lack of functionality prompted us to take proac-
tive measures and embark on the development of a tool that would fill precisely this
gap.

Following this line of work, our main goal was to develop a tool able to detect meta-
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1.2. Methodology

morphic malware using transformations between semantically equivalent sets of in-
structions. As we can see in Chapter 5, the principal objective has been met. These
results not only confirm the viability of this technique but also open the door to new
paths of development such as code line reordering or integration with rule learning,
resulting, as a whole, in a powerful, fast, versatile, and resource-savvy antivirus suite.

To be able to develop this tool, it was necessary to learn logical programming from
scratch. Unfortunately, within the scope of my career, there was no direct opportunity
to grasp the basics of a language belonging to this paradigm in the career. Nevertheless,
by reading blogs and forums aimed at logic programming, it was feasible to develop
the planned implementation while achieving a good final result.

The planning and development of this work followed a customized methodology, de-
parting from the traditional approach of agile methodologies that typically involve fix-
ing a minimal viable product (MVP) and working on achieving an executable version
of it within the shortest possible time frame. Instead, our approach involved breaking
down the minimal viable product into three fundamental steps, which are elaborated
upon in the dedicated implementation chapter (Chapter 4). Then, we allocated three-
quarters of the overall development time to meticulously develop and test each of the
aforementioned steps individually until a sufficient quality, higher than usual in an
MVP, was achieved. I.e., instead of a unique product, we defined three MVPs, and
then we established an agile process for each of them. Afterward, the final quarter
was destined in resolving minor issues, documenting the installation and use of the
tool, and improving the overall code quality. This methodology was useful due to the
modular but sequential nature of this project, reducing the risk of failure in one step
affecting the subsequent steps.

The design process of the tool was focused on achieving our main goal: to develop a
tool capable of detecting metamorphic malware using metamorphic rules.

To complete this goal, first we tracked down its requirements. We needed a program
that could generate variants and then compare them against signatures. To achieve this,
we devised a two-part structure that would effectively address the challenge. In the first
part, metamorphic rules should be applied to achieve the greatest number of variants.
Then, in the second one, each variant of the original code should be compared with
established signatures to effectively detect if the code was malicious. The best course
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1.2. Methodology

of action was not doing the process mentioned above in the original Intel syntax, but in
a comfortable intermediate language, so as a prior step, we implemented a translator
between those.

To test that the conditions presented have been met, we crafted four special cases, one
for each major transformation, and a use case involving a real program. However, to
reinforce an impartial validation process, later we tested the program against randomly
generated programs. All these cases and their results are disclosed in Chapter 5.

By achieving the above objective, it is also demonstrated that static heuristic analysis
can be used to detect metamorphic malware. Therefore, a potential integration with AI
solutions would not decrease but empower the overall effectiveness of this theoretical
suite.

Moreover, while thinking about the structure of the generator module, we noticed the
rule-oriented nature of it. Therefore, we formulated the following hypothesis: "Log-
ical programming would simplify the process of writing and incorporating rules and
signatures". To demonstrate this theory, we implemented the modules in Prolog and
compared its results with the Python implementation, finding that, indeed, the result
was simpler and easier to escalate, strengthening the extensibility of the tool.

This work was also presented at the PROLE 2023 conference. The presented article,
which summarizes the essence of this research, can be viewed in the tool’s repository.
The feedback from the judges has been an invaluable source for improving this work.
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Chapter 2

Background

In this chapter, it is discussed useful knowledge to understand the goal and devel-
opment of this work. First, various techniques used by malware developers to dis-
guise their programs and avoid their detection by antivirus software can be found in
Section 2.1. In Section 2.2, it is explained the theory and method behind MMDect.
Specifically, we will elaborate on the concept of metamorphic rules and how they
work. Finally, in Section 2.3, a brief introduction to Definite Clause Grammars (DCG)
is given, showing its utility in parsing through a comparison between a classic Prolog
implementation and a DCG implementation.

2.1 Different obfuscations techniques used by malware

There is not a single and general technique used by malware developers to evade detec-
tion, but rather they have been evolving and branching out according to new measures
developed by anti-malware systems. There are newer techniques, such as, for example,
mimicking the behavior of a benign program to evade behavioral analysis, while there
are other more traditional techniques such as encrypting or compressing the malicious
payload of the program, i.e. the instructions that carry out the malicious purpose of the
program, and including it with a seemingly innocuous program that would be respon-
sible for reversing that process and executing it. This last technique would be the case
of polymorphic programs.
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2.1. Different obfuscations techniques used by malware

Metamorphic programs are a type of malware that use transformations in its own code
in order to have the same functionality but with different instructions. This technique
is aimed specifically at signature-based analyzers. Still, this type can be further cate-
gorized depending on the type of transformation that is used.

In order of complexity, the most basic one would be adding comments in random
lines of code. A technique derived from this would be the addition of instructions that
don’t do anything (NOP instructions). These new additions change nothing about the
functionality of the code, while adding extra lines that can difficult their automated
analysis. The second test (Subsection 5.1.2) was based on this transformation.

Another technique would be renaming the names of variables and changing the value
of constants. For example, if one piece of malware is recognized by printing a phrase
in a file on a certain date, changing the phrase or the date could drop the number of
positives after analyzing the file. The third test (Subsection 5.1.3) was based on this
transformation.

A third technique would be replacing sets of instructions with equivalent ones, for
example, pushing an immediate to the stack and then extracting the last value of the
stack into a register is the same as directly storing the immediate value in the register.
This example is explained more thoroughly in Section 2.2. Detecting this type of
transformation is the main goal of MMDect, as other transformations would require a
different, but not incompatible, approach. The first test (Subsection 5.1.1) was based
on this transformation.

Another method of camouflaging from analyzers is the addition of jumps or functions.
The code is divided into segments. Then a label is placed in front of each segment. The
segments are then randomly reordered and interwoven by unconditional jumps to their
assigned labels to preserve their original order. An example is illustrated in Fig. 2.1.
The fourth test (Subsection 5.1.4) was based on this transformation.

Each technique is meant to fool one type of analysis, either by encrypting its payload,
behavioral pattern mimicking techniques, or changes in its instructions, among others.
An analyzer directed to detecting polymorphic programs by the analysis of its entropy
can not detect metamorphic malware. Likewise, a program that reverses transforma-
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2.2. Metamorphic rules as functors

Figure 2.1: Additional jumps transformation

tions in the instructions will not be able to identify polymorphic malware. Because of
this, there is not an all-powerful technique able to detect all kinds of malware. The
combination of different methods of analysis is the recommended path to follow, as
the permutation of different obfuscations is both costly and difficult.

2.2 Metamorphic rules as functors

Metamorphic malware, like any malware, is a program with potentially malicious in-
tentions. Yet, the distinction between metamorphic malware and regular malware is
that, with the purpose of fooling analyzers, it goes through a process of finding its own
code and changing it into one that does the same job, but with altered instructions.

One possible transformation uses some rules that dictate equivalent sets of instructions,
called metamorphic rules. An example in Intel syntax would be:

push(1); pop(r12);⇐⇒ mov(r12,1);

Fig. 2.2 shows the behavior of the instructions on the left, push(1); pop(r12); , while
Fig. 2.3 shows the (equivalent) behavior of the instruction on the right, mov(r12,1).
As we see, these two sets of instructions are semantically equivalent because the initial
state and the final state are the same.
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2.3. Definite Clause Grammars

Figure 2.2: Behavior of instructions push(1); pop(12);.

Figure 2.3: Behavior of instruction mov(r12,1);.

The set of metamorphic rules used by a piece of software is called a metamorphic
engine. If we know all the rules (or those needed to recreate them) that potential
malware has used to rewrite its code, we can modify it in the same way, undoing all
the potential mutations it could have made. This is possible because metamorphic rules
work both ways, as they are equivalent.

In this work, we have treated metamorphic rules as functions, in the case of Python,
and as predicates in the case of Prolog.

2.3 Definite Clause Grammars

DCG, or Definite Clause Grammars, is a group of context-free grammars that can
be executed. It is commonly used in the realization of parsers due to its simplicity
compared to the equivalent code in classic Prolog.

Just as there are base cases and longer cases in classic Prolog, in Definite Clause Gram-
mars there are terminal symbols and non-terminal symbols since what is defined is a
grammar.

A terminal symbol is one that cannot be extended any further. If we take the example
of the bidirectional translation of English and Spanish, a terminal symbol would be
"Dog = Perro".

1 animal([dog]) --> [perro].
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2.3. Definite Clause Grammars

The equivalent in classic Prolog would be:

1 animal(dog, perro).

Even though, if we wanted to translate a list of animals, in addition to the terminal
cases, it would be necessary to establish a non-terminal symbol, resulting in the code
shown in Figure 2.4. This Figure also displays that DCG also offers the possibility
to call and execute classic Prolog code in the definition of symbols, if it is specified
between brackets.

To call a grammar, it is necessary to use "phrase". Phrase has three arguments:

• The first one is the grammar we want to use and value we wish to achieve by
executing it. In the following call, "[dog, cat]", is the value "[Word|Phrase]".

• The second one is the original list we want to parse, in this case, "[perro, gato]".

• The third one would be the remainder left after achieving the transformation.

1 phrase(translate([dog, cat]), [perro, gato], Remainder).

Starting from a common base, in which 5 animals are translated individually by con-
stant values:

1 animal(dog, perro).
2 animal(cat, gato).
3 animal(elephant, elefante).
4 animal(frog, rana).
5 animal(dolphin, delfin).

We have programmed a classic Prolog version equivalent to the animal list translation
program, in which two different predicates have been defined for each translation di-
rection. If similar results to those achieved with the grammar defined above in Fig. 2.4
are pursued, it is needed to make some adjustments to the code. The result is the code
found in Fig 2.5.

We can observe that, in DCG, it is not necessary to create two different predicates
for each direction, which greatly simplifies the task. Moreover, although DCG has a
slightly more complex grammar, the resulting code is noticeably simpler to program.
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2.3. Definite Clause Grammars

1 translate([]) --> []. % Terminal symbol
2

3 translate([Word|Phrase])--> % Non-terminal symbol
4 [Palabra],
5 translate(Phrase),
6 {animal(Word,Palabra)}.

Figure 2.4: DCG code for translating a list of animals

1 translate([],Frase,Frase).
2 translate(Phrase, Phrase, []).
3

4 translate(Phrase, Remainder, Frase):-
5 nonvar(Phrase),
6 length(Phrase, L),
7 nth1(L, Phrase, Word),
8 animal(Word, Palabra),
9 append([Palabra], Remainder, New_remainder),

10 append(New_phrase, [Word], Phrase),
11 translate(New_phrase, New_remainder, Frase).
12

13 translate(Phrase, Remainder, Frase):-
14 nonvar(Frase),
15 length(Frase, L),
16 nth1(L, Frase, Palabra),
17 animal(Word, Palabra),
18 append([Word], Remainder, New_remainder),
19 append(New_frase, [Palabra], Frase),
20 translate(Phrase, New_remainder, New_frase).

Figure 2.5: Classic Prolog code for translating a list of animals
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Chapter 3

MMDect: Metamorphic Malware
Detection

MMDect is a tool implemented in Python and Prolog. This tool was developed with
the goal of increasing the security of an information technology system by targeting
the detection of metamorphic malware. To accomplish this, it is employed a static
analysis technique consisting in using metamorphic rules to reverse the possible trans-
formations a piece of malware can have been put through.

The basis of MMDect is the set of metamorphic rules used to detect variations of
known malware. As a proof of concept, we have defined a set of 19 rules, where
the ones with names starting with “G” are inherited from MetaSign (Campion, Dalla
Preda, and Giacobazzi 2021). The defined set of rules can be found in the file rules.txt
in the tool’s repository. Note that MMDect is designed to facilitate the introduction
of new grammars, rules, and signatures. New grammars can be used to expand it to
new languages and syntaxes, new rules widen the possible transformations we can
reverse, and new signatures can broaden the set of malware we can detect. In the
Subsections 4.2 and 4.4.2 it is explained how to add a new rule, while the method to
build new signatures is detailed in Subsections 4.3 and 4.4.3. The Subsection 4.4.4
elaborates on how to add a new grammar. Additionally, in the Subsection 4.2 it is
probed that the Prolog implementation is far superior to the Python implementation in
terms of simplicity of escalation. In other words, it is recommended the use of Prolog
implementation to further expand the tool by writing new rules.
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3.1. General diagram

Figure 3.1: General structure of inputs and outputs

This Chapter in particular focuses on the design of MMDect, while the implementation
details can be found in Chapter 4. First, a general disposition of the code is reviewed
in Section 3.1, providing information about the objective of the two principal modules.
Then, the focus is narrowed down to both modules in Sections 3.2 and 3.3.

3.1 General diagram

In a normal execution, we first translate the original Intel syntax into an intermediate
syntax to handle the code more comfortably.

Once the original syntax is translated, the code is divided into two modules that work
independently. We can internally connect the output of the generator module to the
input of the comparator module, or use only one of them. A diagram of the inputs and
outputs can be seen in Fig. 3.1.

• The generator module will apply rules to obtain different versions of a program.
It takes the original file as input and outputs one or more files.

• The comparator module has one or more programs as input and compares them
with different (stored) signatures to get matches.
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An analysis of a file would first call the generator module, which outputs the metamor-
phic versions. Then the comparator module would compare the original file and the
generated versions against the stored signatures.

Each module is implemented both in Python and in Prolog, with different results.

3.2 Generation of new metamorphic programs

The second step of the execution, the generation of new metamorphic programs, can
be used to reduce the number of lines in a program, improve its readability, and create
different equivalent versions of a program.

The program goes through the file and looks for matches with cases where certain rules
can be applied. The theory and an example of this rules can be found in Section 2.2. In
Prolog, it can choose to apply or ignore them to generate all possible versions, while
in Python it will always apply them. That is, in Python mode, only the version that
applies all possible rules is written to a file. In the default mode (Prolog), however,
every possibility is given.

For example, considering the following program (translated into the intermediate lan-
guage detailed in Section 4.1):
1 ["mov", "[123]", "0x6477737361702FFF"],
2 ["push", "[123]"],
3 ["push", "12"],
4 ["pop", "r12"],
5 ["push", "r12"],
6 ["mov", "r13", "13"],
7 ["mov", "r12", "0xFFFFFFFF6374652F"],
8 ["xor", "rax", "rax"]

The implementation of MMDect under Python generates only one version:1

1 ["push", "7239381865414537215"],
2 ["mov", "r12", "12"],
3 ["push", "r12"],

1We may extend this implementation to generate all the possible combinations. However, since
Python is deterministic, that extension requires more effort than the equivalent implementation using
Prolog, as we already discussed.
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4 ["mov", "r13", "13"],
5 ["mov", "r12", "18446744071083156783"],
6 ["xor", "rax", "rax"]

In the meantime, using the implementation under Prolog, MMDect gives the fol-
lowing 6 possible variations. Focusing only on the instructions in lines 3–5, i.e.,
push(12); pop(r12); push(r12):

• Considering the application of rule g1, push(12); pop(r12) ⇐⇒ mov(r12,12),
MMDect applies the following transformation:

push(12); pop(r12); push(r12)⇐⇒ mov(r12,12); push(r12)

• While considering the application of rule f19, pop(r12); push(r12) ⇐⇒ NOP,
MMDect provides the following (semantically equivalent) transformation:

push(12); pop(r12); push(r12)⇐⇒ push(12)

Note that one of the possible variations is the one generated by the implementation
under Python.

3.3 Detection of malware using signatures

In this step, we compare the generated programs with our base data of signatures to
detect if the input program is infected or malicious. Depending on the version of our
tool we define the signature differently:

• In Python, the signatures are defined in regular expressions (regex):

.*('mov',\s*'((r\w\w?)|(e\w\w))',\s*'0x6477737361702FFF'

.*
'push',\s*'((r\w\w?)|(e\w\w))'
.*
'mov',\s*'((r\w\w?)|(e\w\w))',\s*'0xFFFFFFFF6374652F'
.*
'push',\s*'((r\w\w?)|(e\w\w))').*

• In Prolog, the signatures are a list of functors:
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mov(reg(_Reg), imm('0x6477737361702FFF')),
_,
push(reg(_Reg)),
_,
mov(reg(_Reg),imm('0xFFFFFFFF6374652F')),
_,
push(reg(_Reg))

Regular expressions were chosen as the format to write rules in the Python imple-
mentation because it allows a certain flexibility that the intermediate language has by
default. Both formats allow wildcard arguments and command lines, a specific type of
argument (register, immediate, memory, or tag), or the indication of a particular one.

Still, while a Prolog signature is easier and faster to write, it may have some difficulty
in wildcarding a command and fixing its arguments, whereas in regex it is as simple as
defining other factors. Anyway, it is possible to compare in both formats at the same
time, giving the user the possibility to choose the format according to their situation
and needs.
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Chapter 4

Implementation of MMDect

The implementation details are divided into three basic steps.

• The first step, Translation (Section 4.1), explains how the original Intel syntax
of the suspicious file is translated to the format used by the tool.

• The second step, Generation (Section 4.2), discusses the generation of new meta-
morphic versions.

• Finally, the third step, Detection (Section 4.3), covers matching all generated
versions plus the original file against stored signatures.

Input and output are done via Python. For requests to Prolog, the pyswip library is
used (Tekol 2007).

The generation of new programs is centralized in the generate_program function. From
this module, the implementation in Prolog (generate_prolog) or the one in Python (gen-
erate_python) is called.

The comparison is centralized in the compare_program function, which also manages
the calls to the implementation in Prolog and in Python.

Both generation and comparison functions can be called directly from the main or
generate_and_compare_program, which connects the generate and compare modules.
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4.1. Step 1: Translation from Intel syntax

Figure 4.1: Function calls

Fig. 4.1 details the internal calls the program can make, exclusive OR calls (one or the
other, but not both) are marked in red, AND calls (both are called) are marked in blue
and OR calls (at least one of both) are marked in purple.

4.1 Step 1: Translation from Intel syntax

The intermediate language removes all comments in the code, isolates the header (all
code before the entry point specified), and converts all instructions into a matrix. This
format is directly adapted from the MetaSign project (Campion, Dalla Preda, and Gia-
cobazzi 2021). This code can be found in its GitHub repository (Campion, Dalla Preda,
and Giacobazzi 2020).

Table 4.1: Code converted to a matrix

Instruction line Command
Argument 1

(optional)

Argument 2

(optional)

00 ‘mov’ ‘r12’ ‘0x6477737361702FFF’

01 ‘push’ ‘[123]’

02 ‘push’ ‘12’

03 ‘pop’ ‘r12’
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4.1.1 Translation for Python

In Python, the matrix mentioned above is directly used to generate and compare. This
matrix is composed of a list of lists of a command + argument 1 + argument 2. For
example, Table 4.1 shows the matrix corresponding to the code listed below.
1 # Intro code
2 .global _start
3 .text
4 _start:
5 mov r12, 0x6477737361702FFF
6 # Comment
7 push [123]
8 push 12
9 pop r12 # Comment

4.1.2 Translation for Prolog

On the other hand, under Prolog, it will suffer additional conversions starting from the
previous matrix.

• From a list of lists of strings to a list of lists of a command and a list of its
arguments expressed as atoms:

[[“i”,“a1”,“a2”][“i”,“a”]]⇒ [[i, [a1,a2]], [i, [a]]]

• From the previous list to a list of functors:

[[i, [a1,a2]], [i, [a]]⇒ [i(a1,a2), i(a)]

The parsing from the matrix used in Python to the list of functors used in Prolog is
done with Definite Clause Grammars, although an alternative implementation in clas-
sic Prolog is also included.

In this case, the instruction grammar used is composed of a command and arguments,
simulating the general structure of the original assembly language that is described in
Fig. 4.2.
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4.2. Step 2: Generate new metamorphic programs

Figure 4.2: Instruction grammar

This structure is translated into the code in Fig. A.3 and then, the code in Fig. A.4
invokes the grammar:

• First, in lines 1–6, we call the parse predicate, which handles the two steps of
parsing.

• To convert the matrix into functors with typed arguments, we first use the pre-
vious grammar. The call is made in the “to_atoms” predicate, defined in lines
7–9.

• In lines 10–12, the predicate involving the second step is defined, i.e. to convert
the matrix into functors employing the “to_functors” predicate.

• The predicate “to_functors” manages the matrix and calls the predicate
“to_functor” (lines 13–18). The last predicate converts a list defining an instruc-
tion and its arguments into a functor, using one of the three predicates depending
on the number of arguments of the instruction.

4.2 Step 2: Generate new metamorphic programs

Generation is handled by the generate_program function in modeHandler.py. This
function will redirect the generation to Prolog or Python relevant modules as specified.
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4.2. Step 2: Generate new metamorphic programs

4.2.1 Python implementation

A rule in Python is defined in about ten to twenty complex lines divided into two
functions depending on its complexity. Each rule has a check function and a code
change function.

The check internal function checks that the rule can be applied by verifying the type of
its arguments, as the command types are already confirmed by the apply_rules func-
tion.

The code change function replaces the left side of the rule with the corresponding right
side. An example of two rules is described in Fig. 4.3.

4.2.2 Prolog implementation

Rules in Prolog are defined in a maximum of four simple lines, and only one line if
they do not involve operation instructions. In this implementation, a rule is defined in
the following way:

1 rule(g1, [push(Imm),pop(Reg)], [mov(Reg,Imm)]) :-
2 imm(Imm), reg(Reg).
3

4 rule(g7, [mov(mem(Mem), imm(Imm)), Opi], [Opo]) :-
5 operation(Opi, O, [reg(Reg),mem(Mem)]),
6 operation(Opo, O, [reg(Reg),imm(Imm)]).

where the first argument is its name, the second is the left side of the rule, and the last
argument is the right side. As we can see, defining a rule in Prolog is much simpler
than doing it in Python.
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4.2. Step 2: Generate new metamorphic programs

1 def _rule1_check(self, program_line: int, program: Program) -> bool:
2 return (is_immediate(program, program.operand(program_line, 1))) and (
3 is_register(program.operand(program_line + 1, 1)))
4

5 def rule1(self, program_line: int, program: Program) -> bool:
6 """
7 PUSH Imm / POP Reg <--> MOV Reg,Imm
8 :param program: program to modify
9 :param program_line: line where the rule should be applied

10 :return: True if rule can be applied, False if else
11 """
12 if self._rule1_check(program_line, program):
13 new_line = ["mov", program.operand(program_line + 1, 1),

program.operand(program_line, 1)]
14 program.delete(program_line)
15 program.delete(program_line)
16 program.insert_to_instructions(program_line, new_line)
17 return True
18 else:
19 return False
20

21 def _rule7_check(self, program_line: int, program: Program) -> bool:
22 return (is_memory_address(program.operand(program_line, 1))) and (
23 is_immediate(program, program.operand(program_line, 2))) and (
24 is_register(program.operand(program_line + 1, 1))) and (
25 is_memory_address(program.operand(program_line + 1, 2))) and

(
26 program.operand(program_line, 1) ==

program.operand(program_line + 1, 2))
27

28 def rule7(self, program_line: int, program: Program) -> bool:
29 """
30 MOV Mem,Imm / OP Reg,Mem <--> OP Reg,Imm
31 :param program: program to modify
32 :param program_line: line where the rule should be applied
33 :return: True if rule can be applied, False if else
34 """
35 if self._rule7_check(program_line, program):
36 new_line = [program.instruction(program_line + 1),

program.operand(program_line + 1, 1),
37 program.operand(program_line, 2)]
38 program.delete(program_line)
39 program.delete(program_line)
40 program.insert_to_instructions(program_line, new_line)
41 return True
42 else:
43 return False

Figure 4.3: Code of rules under Python
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4.3. Step 3: Detect malware using signatures

4.3 Step 3: Detect malware using signatures

The detection function is handled by the compare_program in modeHandler.py. This
function will redirect the comparison to Prolog or Python relevant modules as speci-
fied.

4.3.1 Python implementation

The Python module is implemented in regexHandler.py.

A signature in regex follows the structure specified in the subsections hereunder.

General structure

Common signatures start with the symbol ".*(" and end with ").*". The first symbol,
".*", means that the match can happen either at the start or middle of the code, while
the second one means that the last instruction that matches can be at the middle or the
end of the code.

Each instruction is surrounded by a "\[" and "\]" set of symbols. Between instructions
either the set ", " can be put if the instructions must be contiguous, or ".*" if it is not a
requirement to match the signature. An instruction is composed by its command and
its arguments, each of them surrounded by the "’" symbol set. Between the command
and the first argument, and between arguments, the set of symbols ", " or ",\s*" must
be put. The second one guarantees the good operation of the rule by including more
types of space (or the lack of one).

The types of arguments are written directly without specifying their type. Memory
addresses must be between "\[" and "\]". An example of a signature would be:
1 .*(\['mov',\s*'r12',\s*'0x6477737361702FFF'\].*\['shr',\s*'r12',\s*'8'\]).*
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4.3. Step 3: Detect malware using signatures

Recommendations

Variables and wildcards are defined following the same rules as regular expressions.
Even so, there are certain recommended patterns to follow depending on the type of
argument:

• Wildcarding a register: ’((r\w\w?)|(e\w\w))’

• Immediates: it is recommended to give more than one number format. For
example, for the number 0xFFFFFFFF6374652F, it is recommended to use
’(0xFFFFFFFF6374652F|18446744071083156783)’ instead.

• Wildcarding a memory address: ’\[\w+\]’

4.3.2 Prolog implementation

Both the generation and detection of malware in Prolog are implemented in the same
file: dcg_rules.pl in the case of DCG Prolog and rules.pl in the case of classic Prolog.

The following subsections are a guide to the implementation of new signatures in in-
termediate languages.

Basic types

Prolog signatures are a list of functors. Each functor is composed in the same way
that instructions, i.e. instruction(type(argument1), type(argument2)). For example,
"shr r12, 8" will be "shr(reg(r12), imm(’8’))". The definition of each type of argument
follows this pattern:

• Register / reg(register): r12 <–> reg(r12)

• Immediate / imm(immediate): 8 <–> imm(’8’)

• Memory / mem(’address’): [r12] <–> mem(’r12’)

• Tag / tag(name): close_file <–> tag(close_file)
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4.4. Installation and Usage

Variables

A variable can be defined as "V" or "_V" (in this tool, values of variables defined in
signatures will not be displayed). For example:
1 mov(reg(_Reg),imm('0x6477737361702FFF')), shr(reg(_Reg),imm('8'))

In this code, "_Reg" must have the same value in both occurrences. If the first "_Reg"
is assigned the value r12, the second line must be "shr(reg(r12),imm(’8’))" to validate
the signature.

Wildcards

A wildcard whose value will not necessarily be repeated later in the code can be defined
as "_". For example:
1 mov(reg(_),imm('0x6477737361702FFF')), shr(reg(_),imm('8'))

In this other code, "_" doesn’t have to have the same value in both instances. If the first
"_" is assigned the value "r12", the second line could be "shr(reg(r14),imm(’8’))" and
the signature would still apply. Not only instructions or arguments can be wildcarded,
but it is also possible to indicate that zero or more lines may appear between two
instructions by using "_", as seen in the signature uc_etc-passwd-wildcard.prologsign.

4.4 Installation and Usage

In order to use the tool, regardless of the operating system used, since it has a unique
multi-platform code, it is needed Python 3.6 or higher and pip-installable libraries,
mainly colorama. To run the Prolog module, it is required the pyswip library, available
through the normal pip installation. It is also necessary to install SWI Prolog 8.2 or

higher (SWI Prolog ) on the machine where the program will be executed. To do this,
follow the instructions on the official page of SWI Prolog (https://www.swi-prolog.
org/).
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4.4. Installation and Usage

The program analyzed must be written in Intel format in case of assembly code and
must have all sections that are not code before its entry point.

In the following subsections, a guide to its usage and how to add new rules, signatures,
and syntaxes will be provided.

4.4.1 Usage

MMDect is presented as a command line tool because it is the best option when using
it in an automated way, compared to a graphical version. Nonetheless, having this
format does not imply a greater difficulty of use, since it has a help section accessible
at any time using the usual flag "-h" and a comprehensive guide in its repository.

The more basic usage would be executing "python mmdect.py", and it would do a test
execution using a default example located at examples/passwddump.txt.

The tool has the following options, specified as arguments:

• -h or –help to display options.

• -v or –verbose to show output (true by default).

• -a or –att_syntax to write the output file in ATT syntax (Intel syntax is selected
by default).

• -m or –mode to specify mode between generate-only (only execute generation
module), compare-only (only execute comparison module, or both (execute both
modules). "Both" mode is selected by default.

• -p or –python to execute generate, compare, or both in Python instead of Prolog
(default value is none).

• -f or –file to specify the input file. If not specified, it will use examples/passwd-
dump.txt as input.

• -o or –output to specify the name of the output file. If not specified, it will be <
file >-generated.< extension >.

• -O or –positives_output to write positives to a file. If not specified, positives will
be printed in standard output (even in silent mode).
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• -s or –signatures to specify the path of the signatures parent directory, which also
enables compare step. Rules for prolog calculation should have ’.prologsign’
extension, while rules extension for comparison in Python must be ’.txt’. Python
rules can be in a regex format.

• -c or –compare-both to compare both Regex and Prolog signatures (overwrites
-p python in comparison).

• -M or –multiple_input to input multiple files, giving the path to the directory (it
uses recursion) in the -f parameter.

• -P or –prolog to specify the use of DCG (dcg) or classic Prolog (classic). By
default, DCG is used.

4.4.2 Rule definition

New rules are added in dcg_rules.pl if DCG version is used, rules.pl if classic Prolog
version is used, or rulesHandler.py if the Python version is used. Instructions and
examples on how to add a rule can be found in Subsection 4.2.

4.4.3 Signature definition

New signatures are added in the path specified by the "–signatures" argument. Inter-
mediate language signatures have the extension ".prologsign" (but can be written as
a regular plain text file, the extension is used only for simplicity of implementation).
Regex signatures have ".TXT" extension.

The first line of both signatures should contain the name of the signature. Prolog
signatures are multiline and require separate files for each signature, whereas multiple
regex signatures can be stored in the same file. In the latter case, only one name is
specified in the first line, and each signature is associated with a specific line.

The structure of signatures used by Python implementation is detailed in Subsec-
tion 4.3.1, while Subsection 4.3.2 extends the implementation of the signatures used
by the Prolog implementation.
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4.4. Installation and Usage

4.4.4 Grammar definition

Adding a new grammar would require adapting the translation step of the tool to adapt
the syntax of the new language to the intermediate language used. In order to do so, it
is necessary to change the input and output handler, and the grammar defined to do the
translation to the format Prolog uses. Additionally, it would be necessary to add new
signatures and rules applicable to the new syntax.
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Chapter 5

Evaluation

As mentioned before, MMDect and the examples used in the evaluation are available
at https://github.com/Lu-all/MMDect. The first four examples are designed to test
specific capabilities based on typical transformations used by metamorphic malware
explained in detail in Section 2.1, whereas the use case is a real program. In addition
to that, a program that generates programs that may or may not contain malicious
code fragments has been used to test MMDect’s detection capability with non-crafted
examples. More details about the examples can be found in Section 5.1.

The analysis of the results of the cases is displayed in Section 5.2, and the limitations
detected by these tests are described in Section 5.3.

5.1 Examples

The first four examples are crafted using popular transformations used by malware.
These transformations are explained in detail in Section 2.1. Each subsection from
Subsection 5.1.1 to 5.1.4 is dedicated to one transformation. Subsection 5.1.5 is des-
tined for the real use case used to test the tool against a real program. Finally, a program
that generates random files to test the tool was used, as shown in Subsection 5.1.6.
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5.1.1 Basic rule appliance

This example tests the capacity to apply rules and generate metamorphic programs,
reversing the transformation consisting in replacing sets of instructions with equivalent
ones.

The input program will be basic_rule_appliance.txt. To pass this test, the program
should detect a signature made of the first four lines of code after applying a rule on
"pop r12; push r12".

mov(mem('123'),imm(_)),
push(mem('123')),
push(imm(_)),
mov(reg(r13),imm(_))

5.1.2 Comments and fake jumps

This example tests the effectiveness of the tool against comments in the code and
simple fake jumps. In addition to detecting malware even if comments in random
lines of code were added, it also includes the transformation technique of adding fake
jumps. A fake jump consists of adding an if-else where the if and else clauses do the
same thing. For example, in the following instructions, if r13 contains the value 10, it
will jump to the “start_code” tag, but if it is not, it will jump to that tag anyway.

cmp r13, 10
je start_code
jne start_code

The input program containing the fake jump and some comments included in the code
will be comments.txt The signature to detect this program will be the same input but
without comments and a direct jump.
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5.1. Examples

5.1.3 Immediates

Some metamorphic malware changes unimportant immediates or strings to fool ana-
lyzers. A similar technique is to change the format used, for example, changing the
format of a number from decimal to hexadecimal. The goal of this test is to prove the
ability to detect a program without depending on a specific number or format. The
input program will be immediates.txt. The signature used to test will be the same
program, but changing the format of some numbers and using variables instead of
constants in others.

5.1.4 Additional jumps

This case tests the capacity of the tool to detect malware that has used additional jumps
to avoid being detected. The input program will be additional_jumps.txt, while the
signature to detect it is additional_jumps.prologsign, made from the original program
without jumps.

5.1.5 Real use case

The use case defined is a program or artifact that prints a prefixed file, in this case,
“/etc/passwd”, to stdout, with the privileges of the program or user that executes it.
Because of this last feature, it can be used to compromise the confidentiality of a file
with privilege escalation in combination with other elements.

In this case, three signatures are defined. The first one is positive when a program
prints to standard output:

mov(reg(rdx), reg(rax)),
mov(reg(Reg),imm('0x1')),
mov(reg(rdi),imm('0x1')),
mov(reg(rsi),reg(rsp)),
mov(reg(rax),imm('0x1')),
syscall
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5.1. Examples

The second one, when a program puts “/etc/passwd” in the stack:

mov(reg(_Reg),imm('0x6477737361702FFF')),
shr(reg(_Reg),imm('8')),
push(reg(_Reg)),
mov(reg(_Reg),imm('0xFFFFFFFF6374652F')),
shl(reg(_Reg),imm('32')),
push(reg(_Reg))

The third is the same as the second, but tests for variable lines:

mov(reg(_Reg),imm('0x6477737361702FFF')),
_,
push(reg(_Reg)),
mov(reg(_Reg),imm('0xFFFFFFFF6374652F')),
_,
push(reg(_Reg))

The three signatures have their equivalent in Regex format in the corresponding direc-
tory.

5.1.6 Randomly generated programs

Furthermore, apart from the aforementioned tests, a program was created to generate
randomized tests. This program (test_generator.py) can be found in the examples di-
rectory of the tool. These test programs consisted of a permutation of common code
segments and malicious ones, with their order randomized.

Table 5.1: Comparison between Python and Prolog

Time(ms) # of versions Detection

Python Prolog Python Prolog Python Prolog

Basic rule appliance 151 206 1 6 No Yes
Comments and fake jumps 125 166 1 2 Yes Yes

Immediates 164 150 1 1 Yes Yes

Additional jumps 150 148 1 1 No No

Real use case 153 496 1 32 1/3 Yes
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5.2. Analysis of the Evaluation

5.2 Analysis of the Evaluation

After testing the five cases, the tool only fails in both Prolog and Python executions in
the fourth case, as an additional technique is needed to detect this type of change (see
the last column in Table 5.1). This technique is explained in more detail in Section 6.

In addition, Table 5.1 shows that the Python version could not detect the first example,
nor the signatures related to etc/passwd. The Prolog version reports similar execution
times to Python, considering that the former generates more versions. We can observe
this fact in the scenarios where only one version is generated (examples Immediates,
and Additional jumps).

After conducting extensive testing using various randomly generated programs with
the method shown in Subsection 5.1.6, all the obtained results aligned with the afore-
mentioned scenarios. Not a single false positive was produced.

5.2.1 Achievements

The results of the tests performed indicate that the tool has successfully identified
most of the malware. Our proposed objectives have been accomplished, leading to the
successful development of a heuristic static analyzer capable of detecting metamorphic
malware.

This work significantly enhances the traditional antivirus model by enabling the detec-
tion of malicious programs, even in the presence of various types of transformations.
It represents an overall improvement in this field.

Yet, even after obtaining such optimistic results, there are also new opportunities for
improvement, which are discussed in Section 6.1.
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5.3. Limitations

5.3 Limitations

The tests carried out allowed us not only to confirm the effectiveness of the tool but also
to identify areas for improvement and devise solutions to turn those deficiencies into
improvements. The limitations mentioned below can be remedied by developing new
techniques and combining the results with existing tools, thus following a philosophy
of continuous improvement.

5.3.1 Static analysis and zero-days

As with any signature-based detection, to be capable of recognizing malware it must
have a signature for it. A zero-day threat does not have a signature yet, so it is not
possible to detect this type of attack. In order to do so, it is necessary to have AI or
behavioral-based detection, among other alternatives. It is also necessary to have a
broad set of known rules. Even though, this last limitation can be circumvented by
the use of MetaSign (Campion, Dalla Preda, and Giacobazzi 2021), as the goal of this
work was to know and learn new rules.

5.3.2 Code lines reordering and additional jumps

MMDect was not capable of detecting malware in the case explained in Subsec-
tion 5.1.4. This type of transformation would require a very different approach. The
technique needed would involve identifying and reordering blocks of codes, together
with the elimination of unnecessary jumps after this process. Anyhow, a module that
performs this task can be developed and implemented in the tool to increase its detec-
tion rate.

35



Chapter 6

Conclusions

Although malware is a more significant menace than ever, the same impetus continues
to be given to research and development of new techniques to counteract it. Individu-
ally, all methods have weaknesses, but the combination of their strengths can become
a difficult obstacle for malicious actors to circumvent.

We have developed a tool that can be used to detect metamorphic malware using static
analysis, which can be the perfect complement to more costly techniques. This ap-
proach has all the advantages of traditional static analysis, as it does not require prior
training, it does not need to execute potential malware and it is cost-friendly. More-
over, it also covers some deficiencies of traditional heuristic analysis, as it can detect
malicious programs even if they have used a diverse group of mutations.

A high-level approach to the design of the tool can be found in Chapter 3, while some
insight into its implementation is detailed in Chapter 4.

To test the extent to which it was able to detect these mutations, MMDect was tested
with four different scenarios, a real case, and randomly generated programs. This
evaluation can be found in Chapter 5. The results were very positive, as it can detect not
only metamorphic rule-based mutations but also certain types of fake jumps, comment
variations, and immediate format changes. In the following section, it is discussed
some lines of research that would improve even more the results obtained.
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6.1. Future work

6.1 Future work

MMDect is a proof of concept and, of course, can be further developed. Nevertheless,
this work opens new lines of research and we propose to implement the following
functionalities to improve it.

First, code lines reordering to capture additional jumps. This functionality overcomes
the limitation mentioned in the example with additional jumps (Section 5.1.4). It is
recommended to implement a technique that reorganizes the lines of code in such
a way that it does not affect the overall operation of the program. To do this, it is
necessary to take into account the state of the variables (created, accessed, modified,
among others) joined with the call graph and its relation with the jumps performed.
After this process, it is possible to detect which jumps are unnecessary and remove
them.

Second, combine MetaSign capacity of learning rules and MMDect detection. As
these features would reduce the dependency on known rules, it would be a good idea
to add an intermediate plugin that translates the final result of MetaSign executions into
rules expressed in a format that can be read by MMDect (either in Prolog or in Regex
format), combining the functionality of learning new metamorphic rules programmed
in MetaSign with the detection method used by MMDect.

Third, an interesting option would be integrating a decompiler technology in the first
step of the tool, adding the possibility of receiving as input an executable file instead
of an Intel assembly code.

Finally, we would like to improve efficiency by, for example, implementing parallelism
techniques to improve tool execution times.
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Appendix A

Appendix

1 instruction([C]) -->
2 command(C).
3 instruction([C|[A]]) -->
4 command(C), arguments(A).
5 argument(A) --> register(A),!.
6 argument(A) --> memory(A),!.
7 argument(A) --> immediate(A),!.
8 argument(A) --> tags(A).
9 arguments([A]) --> argument(A).

10 arguments([A|As]) --> argument(A), arguments(As).
11 command(add) --> ["add"].
12 command(tag(A)) --> [T],
13 { nonvar(A), atom(A), atom_string(A,T1), string_concat(T1,":",T) }.
14 command(tag(A)) --> [T],
15 { nonvar(T), string(T), string_concat(T1,":",T), atom_string(A,T1) }.

Figure A.1: DCG grammar corresponding to Intel syntax
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1 %[["i", "a1", "a2"],["i","a"],["i"]] --> [i(a1,a2), i(a), i]
2 parse(List, Program) :-
3 nonvar(List), to_atoms(List, Flat), to_functors(Flat,Program), !.
4 %[["i", "a1", "a2"]["i","a"]] <-- [i(a1,a2), i(a)]
5 parse(List, Program) :-
6 nonvar(Program), to_functors(Flat, Program), to_atoms(List, Flat), !.
7 % [["i", "a1", "a2"]["i","a"]] <--> [[i,[a1,a2]], [i,[a]]]
8 to_atoms([], []).
9 to_atoms([S|Ss], [A|As]) :- phrase(instruction(A), S), to_atoms(Ss, As).

10 % [[i, [a1, a2]], [i, [a]] <--> [i(a1,a2), i(a)]
11 to_functors([], []).
12 to_functors([X|Xs], [Y|Ys]) :- to_functor(X, Y), to_functors(Xs, Ys).
13 % [i, [a1, a2]] <--> i(a1,a2)
14 to_functor([],[]).
15 to_functor([tag(T)], tag(T)):- !.
16 to_functor([X|Xa], Y) :- [A] = Xa, [Xa1, Xa2] = A, Y =..[X, Xa1, Xa2].
17 to_functor([X|Xa], Y) :- [A] = Xa, [Xa1] = A, Y =..[X, Xa1].
18 to_functor(X, Y) :- Y =..X.

Figure A.2: Code converted to a matrix

1 instruction([C]) -->
2 command(C).
3 instruction([C|[A]]) -->
4 command(C), arguments(A).
5 argument(A) --> register(A),!.
6 argument(A) --> memory(A),!.
7 argument(A) --> immediate(A),!.
8 argument(A) --> tags(A).
9 arguments([A]) --> argument(A).

10 arguments([A|As]) --> argument(A), arguments(As).
11 command(add) --> ["add"].
12 command(tag(A)) --> [T],
13 { nonvar(A), atom(A), atom_string(A,T1), string_concat(T1,":",T) }.
14 command(tag(A)) --> [T],
15 { nonvar(T), string(T), string_concat(T1,":",T), atom_string(A,T1) }.

Figure A.3: DCG grammar corresponding to Intel syntax
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1 %[["i", "a1", "a2"],["i","a"],["i"]] --> [i(a1,a2), i(a), i]
2 parse(List, Program) :-
3 nonvar(List), to_atoms(List, Flat), to_functors(Flat,Program), !.
4 %[["i", "a1", "a2"]["i","a"]] <-- [i(a1,a2), i(a)]
5 parse(List, Program) :-
6 nonvar(Program), to_functors(Flat, Program), to_atoms(List, Flat), !.
7 % [["i", "a1", "a2"]["i","a"]] <--> [[i,[a1,a2]], [i,[a]]]
8 to_atoms([], []).
9 to_atoms([S|Ss], [A|As]) :- phrase(instruction(A), S), to_atoms(Ss, As).

10 % [[i, [a1, a2]], [i, [a]] <--> [i(a1,a2), i(a)]
11 to_functors([], []).
12 to_functors([X|Xs], [Y|Ys]) :- to_functor(X, Y), to_functors(Xs, Ys).
13 % [i, [a1, a2]] <--> i(a1,a2)
14 to_functor([],[]).
15 to_functor([tag(T)], tag(T)):- !.
16 to_functor([X|Xa], Y) :- [A] = Xa, [Xa1, Xa2] = A, Y =..[X, Xa1, Xa2].
17 to_functor([X|Xa], Y) :- [A] = Xa, [Xa1] = A, Y =..[X, Xa1].
18 to_functor(X, Y) :- Y =..X.

Figure A.4: Code converted to a matrix
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