
Universidad Internacional de La Rioja
Escuela Superior de Ingeniería y Tecnología

Universidad de Alcalá
Escuela de Posgrado

Universidad Rey Juan Carlos
Escuela de Másteres oficiales

Máster Universitario en Inteligencia Artificial para el Sector
de la Energía y las Infraestructuras

fCASP: a forgetting operator and its
application to energy distribution under a

goal-directed ASP decision model

Autor/a: Fidilio Allende, Luciana Camila

Tipo de trabajo: Desarrollo software
Directores: Ossowski, Sascha

Arias, Joaquín

Fecha September 11, 2024

Abstract

Decision systems based on Artificial Intelligence not only streamline the resolution
of complex problems but can also generate more effective responses. As these
responses can affect humans, they must be aligned with human values such as
fairness. For instance, in a cooperative/competitive context where they allocate
crucial resources, they must provide not only effective but also fair decisions.
But, to ensure that their decisions are trustworthy and value-aligned, they must
be able to explain their decisions. However, such explanations and the model
itself may expose sensitive information from the users or third parties, violating
their privacy or, in some cases, the legislation. To filter sensitive data, rule-
based systems, such as those based on Answer Set Programming (ASP), offer
the possibility of manipulating their justifications. Yet, the information can still
be leaked from the rules contained in their models. To remove the information
directly from these models, forgetting operators can be used. However, these
operators have limitations in their practical applications, they can only be applied
in propositional programs, or they are not implemented.

In this work, we propose the design, implementation, and application of fCASP ,
a new forgetting operator implemented over s(CASP), a goal-directed ASP rea-
soner, and its dual rules. Through several examples extracted from the literature,
we show that fCASP not only fulfills the main features of existing forgetting oper-
ators but also, being based on s(CASP) dual rules, we believe it could be extended
to support generic ASP programs with constraints.

Finally, to validate the effectiveness and practicality of fCASP , we defined two
decision models in the context of an agricultural cooperative that generates and
distributes local renewable energy: (i) a propositional model where fCASP is
used to forget sensitive information in the process of accepting or denying the
application of a member to join the energy generation plan, and (ii) a first-order
logic model that assigns the distribution of the energy generated based on human
values, such as fair income from the Strategic Plan of the Common Agricultural
Policy, and where fCASP is used to hide business secrets.

i

Acknowledgments

This work summarizes the work done in the last year, which would not have been
possible without the invaluable help of my directors, Joaquín and Sascha, who
not only proposed this very interesting line of research but also have tirelessly
helped and motivated me to pursue it.

I would also like to thank my co-workers, who, although working in very different
fields, have listened to my ideas, have been interested in them, and have offered
me advice and points of view that I could not have come across in any other way.

Last but not least, I would like to thank my family and friends, who have been
there to encourage me to continue, showing me their support all this time.

To all of you, thank you very much for everything.

ii

Resumen

Los modelos de decision basados en Inteligencia Artificial permiten no solo agilizar
la resolución de problemas complejos, sino que también pueden facilitar respuestas
más justas y efectivas. Como estas respuestas pueden afectar a las personas, es
importante que estén en consonancia con valores humanos. Por ejemplo, en un
contexto cooperativo/competitivo en el que se asignan recursos clave, se debe
generar decisiones no sólo eficaces sino también justas. Pero, para garantizar que
sus decisiones son dignas de confianza y se ajustan a los valores, los sistemas deben
poder ofrecer una explicación de sus decisiones. Sin embargo, estas explicaciones
y el propio modelo pueden exponer información sensible de los usuarios o de
terceros, violando su privacidad o la legislación vigente. Para esconder dicha
información, los sistemas basados en reglas, como los basados en Answer Set
Programming (ASP), ofrecen la posibilidad de manipular sus justificaciones. Sin
embargo, dicha información puede seguir filtrándose a partir de sus modelos.
Para eliminar la información directamente de estos, se pueden utilizar operadores
de forgetting. Sin embargo, estos operadores tienen limitaciones prácticas, sólo
pueden aplicarse en programas proposicionales, o no están implementados.

En este trabajo proponemos el diseño, implementación y aplicación de fCASP ,
un nuevo operador de forgetting implementado sobre s(CASP), un razonador
ASP goal-directed, y basado en sus reglas duales. A través de varios ejemplos
extraídos de la literatura, mostramos que fCASP no sólo cumple las principales
características de los operadores de olvido existentes, sino que además, al estar
basado en reglas duales de s(CASP), creemos que podría extenderse para soportar
programas ASP genéricos con restricciones.

Para validar la efectividad y practicidad de fCASP , definimos dos modelos de
decisión en el contexto de una cooperativa agrícola que genera localmente (y dis-
tribuye) energía renovable: (i) un modelo proposicional en el que fCASP se utiliza
para olvidar información sensible en el proceso de aceptación o denegación de la
solicitud de adhesión de un socio al plan de generación de energía, y (ii) un modelo
usando lógica de primer orden que asigna la distribución de la energía generada
en función de valores humanos, como los ingresos justos del Plan Estratégico de
la Política Agrícola Común, y en el que fCASP se utiliza para ocultar secretos de
negocio.

iii

Contents

Abstract i

Acknowledgments ii

Resumen iii

Contents iv

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Objectives . 3

1.1.1 Implementation of a suitable forgetting technique 3
1.1.2 Modeling value-aware decision systems for locally generated

energy management . 4
1.2 Thesis contributions and impact 5
1.3 Thesis Organization . 6

2 Background and related work 7
2.1 Answer Set Programming . 7
2.2 s(CASP): Goal-directed ASP reasoner 8

2.2.1 Dual rules compilation . 9
2.2.2 Explainability: Justification Trees 10

2.3 State-of-the-art Forgetting Techniques 11

3 fCASP , a Forgetting Technique based on Goal-directed ASP 14
3.1 A simple and iterative Design . 14

3.1.1 Step 1: Add auxiliary predicates due to even loops, facts,
and/or missing predicate 15

3.1.2 Step 2: Generate the simplified dual rule(s) using s(CASP) 16
3.1.3 Step 3: Forget the predicate and its negation 17
3.1.4 Step 4: Clean true/false and add double negations to pre-

serve even loops . 19

iv

Contents

3.1.5 (Optional) Step 5: Transform double negations into even
loops. 20

3.2 Implementation as s(CASP) extension 20
3.3 Preliminary validation through examples 21

3.3.1 Forgetting predicates in even loops 22
3.3.2 Forgetting predicates present in double negations 23
3.3.3 Forgetting multiple predicates regardless of the order . . . 23
3.3.4 Comparing the required auxiliary predicates 24

4 (Legal and Ethical) Motivation 25
4.1 Right to Explanation vs. Right to Privacy 25
4.2 Requirements for the admission of a farmer 27
4.3 Energy Assignment in Cooperatives 28

4.3.1 Ethical Values in Energy Management 28
4.3.2 Energy Distribution considering Fairness 29

5 Transparent and fair energy assignment using fCASP 31
5.1 Use case in Propositional Logic 31

5.1.1 Modeling a fair candidate selection system 32
5.1.2 Evaluation of the propositional use case 33

5.2 Use case in First Order Logic . 38
5.2.1 Modeling fair energy assignment 39
5.2.2 Evaluation of the First Order Logic use case 42

6 Conclusions and future work 45
6.1 Conclusions . 45
6.2 Future work . 45

Bibliography 47

v

List of Tables

2.1 Comparison of the more relevant forgetting operators vs. fCASP . 13

vi

List of Figures

3.1 Main function of fCASP . 21

5.1 Clauses that verify the low grid energy demand of the candidate. . 33
5.2 Input and output files for the application of fCASP to forget sen-

sitive data of Adam . 33
5.3 Justifications of answer 1 for ?-low_consumption and Adam. . . . 37
5.4 Justifications of answer 2 for ?-not accept_membership and Bob. . 38
5.5 Justifications of answer 1 for ?-low_consumption and Lucy. 38
5.6 Diagram of farmer’s modules. 39
5.7 Diagram of predicates on each module. 40
5.8 Eric’s salary programs and justifications (original vs. forgetting). . 42
5.9 Bea’s salary programs and justifications (original vs. forgetting). . 44

vii

Chapter 1

Introduction

Decision systems have rapidly evolved in recent years thanks to the application
of various Artificial Intelligence techniques. In particular, there has been an
improvement in the effectiveness of the answers given by the models thanks to
the advances in the sector.

More recently, research and debate on the ethics applied to Artificial Intelligence
have gained momentum, as the decisions generated by the models may adversely
affect the fundamental rights and safety of individuals, even if the system was
well-intentioned. For this motive, whether through self-regulation and soft law
(guidelines, codes of conduct, declarations, ethical charters, etc.) or legal regula-
tion (e.g., the General Data Protection Regulation (GDPR) or the Regulation on
AI, both by the EU), promoting a reliable AI, focused on humans, is of foremost
importance.

To ensure that the models’ responses are not only effective, but that they are also
fair, it’s necessary that a series of ethical values are taken into account in their
development, and that the dataset (if any) used to infer the model is not biased,
that is, factors such gender or race (or derived factors) are only relevant to the
decision if they have a fair explanation for their impact. For example, gender
should not be a relevant factor in the hiring process for warehouse positions, but
it can be a crucial factor in pharmaceutical studies as some chemicals may have
different effects depending on it.

In order to audit a model and verify that it is aligned to a set of ethical values,
verifying both its development and the possible dataset used, the model must
be transparent and understandable, being explainability a requirement marked
by the Regulation on AI of the European Union. In particular, value-aligned
(Montes et al., 2023) systems must be capable of explaining the models and
justifying decisions taken in a human-understandable manner, in terms of the
values and norms that influenced the reasoning process, among others. These

1

justifications make it possible for these users can understand the terms and norms
used for generating the justification, generating in turn a stronger confidence in
the model.

However, the explanations that allow an understanding of the logic behind a
model’s decision, with the aim of increasing the transparency of the model, can
also expose sensitive user information if this data is used to generate a response.

Some proposals based on Answer Set Programming (ASP), thanks to their rule-
based nature, are able to provide explanations for their decisions. A notable
system with these characteristics is s(CASP) (Arias et al. 2018), a goal-directed
Answer Set Programming (ASP) reasoner, which provides justifications for its
decisions. Furthermore, these justifications can be presented in natural lan-
guage (Arias et al. 2020). In addition, it allows the manipulation of justifications
to create a semantically equivalent justification with hidden sensitive atoms. Yet,
even if the justifications have been manipulated, the model still can expose sen-
sitive information. This fact poses a challenge when the model must be audited.
To remove sensitive information effectively, it is necessary to apply forgetting, a
technique that removes predicates from a program with minimal changes in its
behavior and answers.

Another promising approach to hide sensitive information could be the crypto-
graphic technique of Zero-Knowledge Proofs (Goldreich and Oren, 1994), where
the model would explain/prove that the decision is based on certain information
without revealing the information or any aspect of it, but this line of research is
outside the scope of this work.

Our proposal, based on s(CASP), is a forgetting technique called fCASP that
supports the presence of even loops in programs with non-stratified negations
and can be applied to Constraint Answer Set Programs. In particular, we plan
to manipulate s(CASP) programs to provide models and justifications forgetting
sensitive information in several scenarios.

To validate the practical application of fCASP , we propose a (real) use case that
models the requirements for qualifying for membership in an energy community
within an agricultural cooperative, being the purpose of this community the gen-
eration of energy to address the instability of energy supply in rural areas while
benefiting the ecological environment. Furthermore, the distribution of energy is
also carried by an ASP decision system, which allocates the energy by awarding
points considering human values (in this case, fairness). It’s important to note
that both models will involve private or confidential information, which will be
required to be forgotten.

2

1.1. Objectives

1.1 Objectives

The goal of this work can be divided into two objectives:

The first one is to design, model, and implement a suitable technique that can
hide sensitive information from a program and its justifications without affecting
its explainability.

The second one is creating decision models based on human values to automate
the acceptance of a candidate to a renewal energy community and the distribution
of the energy that it generates, digitalizing the agricultural sector through the
use of Artificial Intelligence, and promoting the use of rule-based models.

1.1.1 Implementation of a suitable forgetting technique

The answers of rule-based programs can be explained with the help of certain
reasoners, such as s(CASP) (Arias et al. 2018), detailed in Chapter 2 along with
the background theory related to this work, i.e., Answer Set Programming (Sec-
tion 2.1), s(CASP) (Section 2.2) and the properties and techniques related with
the concept of forgetting (Section 2.3). However, even if these explanations can
bring transparency to the program, they may also reveal sensitive information.
To affront this challenge, in this work we propose extending the functionality
of s(CASP) to preserve the privacy of the programs while maintaining their ex-
plainability. With this approach in mind, the first objective is to design and
implement a technique capable of deleting sensitive information in a program,
while minimizing the impact of this modification on the program, thus conserv-
ing its explainability and preserving its original answers.

To achieve this, we studied the techniques related to forgetting, which focused
precisely on the preservation of semantic information while removing predicates
from a program. Nonetheless, as we comment in Section 2.3 where we discuss the
properties of the most relevant forgetting techniques, while researching forget-
ting operators, we found out that most of them were not implemented and were
focused on programs without variables or (arithmetical) constraints. The only
implemented operator found (Calimeri et al. 2024) was applied after grounding,
so the program needed to be executed to apply the operator. Furthermore, this
operator was not aimed to preserve the privacy of original programs but as a
complement to simplify the program obtained while over-grounding. Addition-
ally, some of the theoretical operators could not be applied to forget multiple
predicates, or were limited in other manner on the grade of equivalence obtained
or on the properties a program needed for the operator to be applied on.

3

1.1. Objectives

Some restrictions could not be resolved, as some level of equivalence cannot be ob-
tained for every program without using additional predicates (Gonçalves, Knorr,
and Leite 2016).

However, we wanted to focus not on this theoretical challenge, but on achieving
an implemented operator that could generate a program that could output the
same answers as the original (omitting the sensitive information) and did not
expose private or confidential data on the model or its justifications. In that
matter, we focused on the practicality of the algorithm, but not without trying
to reduce the number of additional predicates needed.

To satisfy this objective, in this work we have defined the forgetting operator
fCASP in Chapter 3., given more details about its design and its implementation
in Section 3.1 , and its use as part of s(CASP) in Section 3.2. This forgetting
operator can delete sensitive information in both an ASP program itself and its
justifications. As for the capacities of this operator, it needs to be capable of
forgetting multiple predicates in a commutative way, even if they are present
in loops or double negations. The specific objectives of fCASP here defined are
evaluated in Section 3.3 by solving flagship examples of the literature.

1.1.2 Modeling value-aware decision systems for locally
generated energy management

The second objective of this work is to control the management of energy through
the use of two value-aware decision systems, one for the acceptance of a candidate
to the energy association, and one for the distribution of the generated energy.
The use of these systems paves the way for the digitalizing of the agricultural
sector through the use of Artificial Intelligence, and the modeling of fair systems,
and promotes the use of rule-based models. The motivation and general reasoning
behind the models are contemplated in Chapter 4, while the specific details behind
the criteria chosen and their modeling are described in Chapter 5.

Model explainability is essential for building trust in its decisions while filtering
sensitive data is crucial to protect the privacy and confidentiality of farmers and
their businesses. To effectively protect sensitive data, it is necessary to remove
that information from the model itself, that is, to forget that information, as it
is detailed in Section 4.1.

The forgetting operator fCASP helps to maintain the balance between the right
to privacy and the right to explanation, a conflict more detailed in the first use
case, a propositional system to automatically decide if a candidate may or not
(or it is uncertain) join the community formed to generate energy locally using
renewable sources. This use case is more detailed in Section 4.2, while the details
for its implementation are contemplated in Section 5.1.

4

1.2. Thesis contributions and impact

To apply fCASP to energy distribution, a second use case (with variables) has
been defined where the membership to a community of energy generation, and
its distribution, are determined by a number of points awarded to farmers. As
detailed in Section 4.3, these points are assigned considering the objectives for
improved agricultural exploitation defined in the Strategic Plan of the Common
Agricultural Policy, which considers values such as equity and environmental con-
sciousness. Section 5.2 details the specific modeling of these criteria. As fCASP

does not support programs with variables yet, the application of the operator to
this program is theoretical.

Finally, in Chapter 6 it is shown that the results of evaluating the performance
of fCASP using the flagship examples of the literature and the two use cases
proposed are promising, and satisfy the objectives described as we describe in
Section 6.1. In addition, in Section 6.2 we have detailed the future lines of work
identified to improve our proposal.

1.2 Thesis contributions and impact

In this Section, the contributions of this work to the industry are detailed, along
with the publications that have stemmed from these contributions.

As outlined in Section 1.1, this work describes the design and implementation of
a new forgetting operator capable of hiding information in propositional Answer
Set Programs. It is anticipated that this operator can be extended to support
variables and (algorithmic) constraints as well in the future. The first insights
of this operator were presented in a preliminary work (Fidilio-Allende and Arias
2024) published under the PROgramación y LEnguajes (PROLE) conference,
hosted by the SISTEDES society.

Then, to check the practical use of this operator, two use cases were defined:
the first involved a propositional decision system for the filtering of applicants,
submitted to the 40th International Conference on Logic Programming (ICLP).
The second use case focused on a decision system fair distribution of energy in
agricultural cooperatives. This last use case was accepted in the Workshop on
Adaptive Smart areaS and Intelligent Agents (ASSIA) under the Conference of
Practical Applications of Agents & Multi-Agent Systems (PAAMS). It incorpo-
rates variables and recreates a simulation of how forgetting would be applied in
these programs focusing on its practical implications.

5

1.3. Thesis Organization

1.3 Thesis Organization

Chapter 1 expands on the motivation behind this work and the general and
specific objectives marked to value the effectivity of fCASP are specified.

Chapter 2 provides a theoretical background of ASP programs and s(CASP), and
includes the current state of the art, including forgetting operators and the more
important properties to describe its capacities.

Chapter 3 focuses on the implementation, use, and capacities of fCASP .

Chapter 4 details the motivations for the decision systems and their criteria for
accepting the application of a farmer to join the energy community, and for the
energy allocation.

Chapter 5 models the criteria chosen, presenting the implementation of the de-
cision systems that constitute the use case. Then, this Chapter evaluates the
application of fCASP to check if the sensitive information is effectively removed
from the models and their explanations.

Chapter 6 summarizes the results obtained after the experiments, and proposes
future lines of research and improvement.

6

Chapter 2

Background and related work

2.1 Answer Set Programming

ASP (Gelfond and Lifschitz 1988; Brewka, Eiter, and Truszczyński 2011) is a
logic programming paradigm suited for knowledge representation and reason-
ing (Brewka, Eiter, and Truszczyński 2011). ASP also facilitates commonsense
reasoning (Gupta 2022). An ASP program P is a finite set of rules. Each rule
r ∈ P is of the form:

a:- b1,. . .,bm,not bm+1,. . .,not bn.

where a and b1, . . . , bn are atoms and not corresponds to default negation. An
atom is an expression of form p(t1, . . . , tn) where p is a predicate symbol of arity
n and ti, are terms. An atom is ground if no variables occur in it. The set of
all constants appearing in P is denoted by CP . The head of rule r is h(r) = {a}
and the body consists of positive atoms b+(r) = {b1, . . . , bm} and negative atoms
b−(r) = {bm+1, . . . , bn}. Intuitively, rule r is a justification to derive that a is true
if all atoms in b+(r) have a derivation and no atom in b−(r) has a derivation.
An interpretation I is a subset of the program’s Herbrand base and it is said to
satisfy a rule r if h(r) can be derived from I. A model of a set of rules is an
interpretation that satisfies each rule in the set.

Under the stable model semantics logic programs with non-stratified negations
may generate multiple models. E.g., the following program has two models:

1 p :- not q. 2 q :- not p.

In the first one, denoted as {p}, the atom p is true, and q is false, while in the other,
denoted as {q}, p is false and q is true. These interleaving calls over negation
form an even loop because there is an even number of intervening negations. If
the number were odd, it would result in an odd loop, leading to an inconsistency.

7

2.2. s(CASP): Goal-directed ASP reasoner

A difference between ASP and Prolog-style (i.e., SLD resolution-based) languages
is the treatment of negated literals. Negated literals in a body are treated in ASP
using their logical semantics based on computing stable models. The negation as
failure rule of Prolog (i.e., SLDNF resolution (Clark 1978)) makes a negated call
succeed (respectively, fail) iff the non-negated call fails (respectively, succeeds).
To ensure soundness, SLDNF has to be restricted to ground calls, as a successful
negated goal cannot return bindings. However, SLDNF increases the cases of
non-termination w.r.t. SLD.

Extended ASP with double default negation (Lifschitz, Tang, and Turner
1999) In this work we consider extended logic programs with clauses of the form
p:- not not p. This operator, not not, is made to represent the concept of not
having proof of the fact of not having proof that a predicate is true. This concept
generates two possibilities: in one the predicate holds, as the predicate is true and
there is proof of that, and the other possibility is that even if there is no proof of
not having proof of the predicate being true, the predicate does not hold.

An interesting fact about these programs under the answer set semantics is that
two negations as failure operators in a row do not, generally, cancel each other.
I.e., the program p:- not not p gives two possible models {} and {p}. But, if we
cancel the double negation, the resulting program p:- p has only one model {}.
On the other hand, if we follow (Lifschitz, Tang, and Turner 1999) and “denote”
the subformula not p by q the program turns into the even loop example we shown
above, and after dropping the “auxiliary” symbol q from both stable models,
we will get the expected models {} and {p}, and the semantic information is
conserved as q represents not having proved the predicate p holds, and p represents
not having proof of the predicate q holding.

Our proposal, fCASP , uses this transformation strategy when identifying atoms
that incur in even loops (in both cases, due to double negations and interleaving
calls over negation).

It is worth noting that the double negation operator ‘not not’ is not supported
in s(CASP). A possible substitute that preserves the information expressed is an
explicit even loop using an auxiliary predicate. This transformation is explained
in more detail in Section 3.1.1.

2.2 s(CASP): Goal-directed ASP reasoner

s(CASP) is a top-down, goal-driven interpreter of Constraint ASP programs writ-
ten in Prolog (https://gitlab.software.imdea.org/ciao-lang/sCASP). The top-
down evaluation makes the grounding phase unnecessary. The execution of an
s(CASP) program starts with a query, and each answer is the resulting mgu of a

8

https://gitlab.software.imdea.org/ciao-lang/sCASP

2.2. s(CASP): Goal-directed ASP reasoner

successful derivation, its justification, and a (partial) stable model. This partial
stable model is a subset of the ASP stable model (Gelfond and Lifschitz 1988)
including only the literals necessary to support the query with its output bindings.

s(CASP) has two main differences w.r.t. Prolog: first, s(ASP) resolves negated
atoms not li against dual rules of the program, instead of using negation as failure.
This makes it possible for a non-ground negated call not p(X) to return the results
for which the positive call p(X) would fail. Second, and very important, the dual
program is not interpreted under SLD semantics. Instead, different loops, such
as even, odd, and positive loops are handled to construct different models, detect
inconsistencies and reduce non-termination cases respectively.

It is also important to mention the difference between denials and constraints
in s(CASP). In this context, ‘denials’ refer to rules without head (classic con-
straints), while the term ‘constraints’ relates specifically to arithmetic constraints.
In the continuation of this work, this naming convention will be utilized.

2.2.1 Dual rules compilation

The dual of a predicate p/1 is another predicate that returns the X such that
p(X) is not true. To synthesize the dual of a logic program P , we first obtain the
Clark’s completion (Clark 1978), which assumes that the rules of the program
completely capture all possible ways for atomic formulas to be true. Then, we
apply De Morgan’s laws. Since the forgetting technique we are presenting in
this work is based on s(CASP) dual programs, let us include the description
from (Arias et al. 2018) (presented at length elsewhere (Arias et al. 2022)).

1. For each literal p/n that appears in the head of a rule, choose a tuple −→x of
n distinct, new variables x1, . . . , xn.

2. For each ith rule of p/n of the form pi(
−→
ti) ← Bi, with i = 1, . . . ,k, make

a list −→yi of all variables that occur in the body Bi but do not occur in the
head pi(

−→
ti), add ∃−→yi to the body and rename the variables that appear in

the head −→ti with the tuple −→x , obtained in the previous step, resulting in
a predicate representing ∀−→x (pi(−→x) ← ∃−→yi Bi). Note that −→x are local,
fresh variables. This step captures the standard semantics of Horn clauses.

3. With all these rules and using Clark’s completion, we form the sentences:

∀−→x (p(−→x) ←→ p1(−→x)∨·· ·∨pk(−→x))
∀−→x (pi(−→x) ←→ ∃−→yi (bi.1∧·· ·∧ bi.m∧¬ bi.m+1∧·· ·∧¬ bi.n))

4. Their semantically equivalent duals ¬p/n, ¬pi/n are:

∀−→x (¬p(−→x) ←→ ¬(p1(−→x)∨·· ·∨pk(−→x)))
∀−→x (¬pi(−→x) ←→ ¬ ∃−→y i (bi.1∧·· ·∧ bi.m∧¬ bi.m+1∧·· ·∧¬ bi.n))

9

2.2. s(CASP): Goal-directed ASP reasoner

5. Applying De Morgan’s laws we obtain:

∀−→x (¬p(−→x) ←→ ¬p1(−→x)∧·· ·∧¬pk(−→x))
∀−→x (¬pi(−→x) ←→ ∀−→y i (¬bi.1∨·· ·∨¬ bi.m∨ bi.m+1∨·· ·∨ bi.n))

which generates a definition for ¬p(−→x) and a separate clause with head
¬pi(−→x) for each positive or negative literal bi.j in the disjunction. Addi-
tionally, a construction to implement the universal quantifier introduced in
the body of the dual program is available in s(CASP) reasoner.

Definitions for the initially negated literals ¬bi.m+1 . . .¬bi.n and for each of the new
negated literals ¬bi.1 . . .¬bi.m are similarly synthesized. At the end of the chain,
unification has to be negated to obtain disequality, e.g., x = y is transformed into
x ̸= y, also handled by s(CASP) interpreter.

To avoid redundant answers in predicate ASP, every clause for a negated literal
¬li includes calls to any positive literal lj with j < i. For example, given the rules
p(0) and p(X):- q(X),not t(X,Y), the resulting dual rules for p/1 are:

1 not p(X) :- not p1(X), not p2(X).
2 not p1(X) :- X\=0.
3 not p2(X) :- forall(Y, not p2_(X,Y)).

4 not p2_(X,Y) :- not q(X).
5 not p2_(X,Y) :- q(X), t(X,Y).

where while the clause in line 5 would only need to be not p2_(X,Y):- t(X,Y),
the literal q(X) is included to avoid exploring solutions already provided by
not p2_(X,Y):- not q(X). Note that for propositional ASP programs, this op-
timization can be disabled in s(CASP) by passing the flag -d, --plaindual.

2.2.2 Explainability: Justification Trees

As s(CASP) models are rule-based models and partially self-explanatory ASP
proof trees, it is possible to obtain justifications for their answers. Given a pro-
gram (that can contain constraints) and a query, it will search for a number of
possible answers. Those answers are partial stable models with only the relevant
atoms that satisfy the query given, which means: only the atoms needed to (i)
satisfy the non-negated atoms, (ii) make the negated atoms can only be false,
and (iii) do not make any contradiction true (by satisfying the constraints). For
each answer (stable model), s(CASP) is capable of generating the justification
tree and the grounding of the relevant variables (Arias et al. 2022).

A justification tree is a factual explanation in which the top-down reasoning (from
a general concept to specific ones) to prove why the conditions given by a query
are satisfied. For example, given a program with the predicates p :- not q, q
:- not r and r and the query p, the reasoning would be that p is true because
not q is true or q is not true, and that statement is true because r is true. In

10

2.3. State-of-the-art Forgetting Techniques

addition, no contradiction has been triggered, so the global constraint is also
satisfied. That explanation, represented as a justification tree, would be:
1 p :-
2 not q :-
3 r.
4 global_constraint.

Other systems based on ASP that follow a top-down execution can also trace
which rules have been used to obtain the answers more easily. One such system
is ErgoAI (https://coherentknowledge.com), based on XSB (Swift and Warren
2012), which generates justification trees for programs with variables. ErgoAI has
been applied to analyze streams of financial regulatory and policy compliance
in near real-time providing explanations in English that are fully detailed and
interactively navigable. However, default negation in ErgoAI is based on the
well-founded semantics (Gelder, Ross, and Schlipf 1991) and therefore ErgoAI is
not a framework that allows the representation of ambiguity and/or discretion.

To the best of our knowledge, explainable AI techniques for black-box AI tools,
most of them based on machine learning, are not able to explain how variation in
the input data changes the resulting decision (DARPA 2017). While counterfac-
tual explanations provide local justifications for a specific decision, they are not
able to provide a global justification.

2.3 State-of-the-art Forgetting Techniques

Forgetting is a transformation that removes predicates of an ASP program with
minimal impact on its behavior and outputs. For example, if we consider a part of
a taxonomy from (Gonçalves, Knorr, and Leite 2023), which includes professors,
university staff, and persons with assigned properties, and represented in rules
as:

1 person(X) :- ustaff(X). 2 ustaff(X) :- professor(X).

If we were to forget the predicate ustaff exists, it should still hold that if X
is a professor, then X is a person. This relationship would be represented as
person(X):- professor(X), being that clause the result of forgetting ustaff in
the proposed taxonomy.

Forgetting operators are the techniques used to make these transformations in
a model while preserving as much as possible the output and structure of the
original model.

11

https://coherentknowledge.com

2.3. State-of-the-art Forgetting Techniques

In recent years, research on forgetting operators has intensified due to the impor-
tance of this technique in areas such as grounding, stream reasoning, or Explain-
able Artificial Intelligence (XAI) systems to resolve conflicts caused by inconsis-
tencies in propositional logic, and to update knowledge databases, among other
applications of forgetting such as those described in (Eiter and Kern-Isberner
2019) and (Gonçalves, Knorr, and Leite 2023).

Most of the work in the literature focuses on discussing the properties of different
forgetting operators (Gonçalves, Knorr, and Leite 2023). These properties are
formulated by comparing the original program with the result after applying
forgetting, thereby defining the equivalence relationship between them.

• Weak Equivalence (WE) (Wong 2009) is a basic relationship that needs
to be satisfied: two programs are weak equivalent if their answer sets are
the same.

• Uniform Equivalence (UE) (Gonçalves et al. 2021) is a more relaxed
equivalence: two programs are uniform equivalent if their answer sets are
the same, even when adding (explicitly limited) additional facts, being a
fact a rule without body.

• Strong Equivalence (SE) (Wong 2009) is more restrictive: two programs
are strong equivalent if their answer sets are the same, even when adding
additional rules.

• Relativized Strong Equivalence (RSE) (Woltran 2004) is a relaxed
form of (SE) that permits declaring the set of atoms that cannot appear as
part of the additional rules.

Based on these equivalence classes the following properties have been defined over
the forgetting operators:

• Consequence persistence (CP) (Gonçalves, Knorr, and Leite 2016): an
operator is consequence persistent when the result of forgetting satisfies
(WE) with the original program, provided that the predicates marked for
forgetting are removed from both sets of stable models.

• Uniform persistence (UP) (Gonçalves et al. 2021): an operator is uni-
form persistent when the result of forgetting an atom and the original pro-
gram share the same answer sets (ignoring the forgotten predicates) even
when an arbitrary set of facts are added.

• Strong persistence (SP) (Knorr and Alferes 2014): is a key property that
requires the original program and the result of generated program share the
same answer sets even if new rules (not containing forgotten predicates) are
added. That is, an operator is strong persistent when the original program
and the result of forgetting satisfies (CE) with the original program, i.e.,
are strong equivalent (SE), modulo the forgotten atoms.

12

2.3. State-of-the-art Forgetting Techniques

The (SP) property establishes the basis for defining forgetting on classic logic and
ASP. However, (Gonçalves, Knorr, and Leite 2016) have proved that the applica-
tion of forgetting in programs with even loops (due to interleaving even negations
or double negations) is not always possible if we want to preserve (SP). Later,
they overcome this limitation by adding an auxiliary predicate (see (Berthold
et al. 2019) for details).

In Table 2.1 we compare some properties of our proposal w.r.t. the more relevant
operators attempting to comply with uniform/strong persistence:

• fSU by (Gonçalves et al. 2021), complies with (UP), but it does not satisfy
(SP), is restricted to propositional programs without constraints, and while
it can act over loops, it is restricted to stratified programs, and is not
commutative (i.e., the forgotten program differs according to the order in
which the atoms are forgotten).

• fSP by (Gonçalves et al. 2017), satisfies (UP) and (when no additional pred-
icates are needed) also (SP). However, it cannot act effectively over loops
or multiple predicates, and it is also restricted to propositional programs
without constraints.

• f∗
SP by (Berthold 2022) has the same limitations on satisfying SP as fSP ,

but it can act over loops and multiple predicates.
• Finally, fAC by (Berthold et al. 2019), is able to always satisfy (SP), because

it uses additional predicates (as our proposal does), and it can act over loops
and multiple predicates. This auxiliary predicate is added when compiling
the as-dual, i.e. the set of literals that can be used to represent the negated
value of a predicate. Specifically, the additional predicate is used as the as-
dual of a literal that does not appear in any head. However, it is restricted
to propositional programs without constraints.

(UP) (SP) Loops Commutative Predicates Constraints

fSU Yes No Yes No No No
fSP Yes Limited No No No No
f∗

SP Yes Limited Yes Yes No No
fAC Yes Yes Yes Yes No No

fCASP Yes Yes Yes Yes WiP WiP

Table 2.1: Comparison of the more relevant forgetting operators vs. fCASP

13

Chapter 3

fCASP , a Forgetting Technique
based on Goal-directed ASP

In this chapter, we explain the intended design of fCASP as an extension of
s(CASP), the algorithm that implements this design, how it can invoked using the
goal-directed reasoner, and we evaluate its performance against a set of examples
of the literature as a first step to evaluate its capacities.

3.1 A simple and iterative Design

In this work, we planned to design an operator that could support a wide range
of programs within the scope of those supported by s(CASP). To achieve an ac-
ceptable equivalence relationship between the original program and the generated
one, it was necessary to consider including additional atoms, as strong persistence
can only be achieved (without adding them) on the programs that do not satisfy
Ω, that is, the conditions defined in (Gonçalves, Knorr, and Leite 2016).

The current design covers propositional programs with even/odd loops and dou-
ble negations, and it is planned to be extended in the future to programs with
variables and constraints. It consists of 4+1 steps: four of them are performed
iteratively with each predicate that must be forgotten, while the last step is op-
tional, and is performed when there are no more predicates to forget.

For example, if we want to forget p and q in the following program:
1 p :- not q.
2 q :- t, not u.
3 q :- not r.
4 r :- not s.
5 s :- q, not p.

14

3.1. A simple and iterative Design

it would perform steps one to four for predicate p, then repeat those steps for
predicate q, and, optionally, in the end, the fifth step would be performed. Next,
we will go through the steps one by one in more detail, considering we want to
forget the predicate p from the example displayed above.

3.1.1 Step 1: Add auxiliary predicates due to even loops,
facts, and/or missing predicate

In the first step, three types of transformations are performed depending on the
conditions of the predicate to forget.

Even loops. The first type of transformation will be performed if the predicate
is part of an even loop. In that case, an auxiliary predicate neg_x will be added,
where x is a numeric value. As it is the first auxiliary predicate used, x will be
1. All appearances of the negated predicate, i.e., not p if the predicate to forget
was p, are replaced with the auxiliary predicate. Then, a clause of the form
neg_x :- negated predicate is formed, in this case, the clause neg_1 :- not p.

Original program
1 p :- not q.
2 q :- not p.

Transformed program
1 p :- not q.
2 q :- neg_1.
3 neg_1 :- not p.

Facts. If the predicate was a fact, that is, a predicate with a clause without
body, then the predicate true would be added as the body of that clause, as this
clause would always be true.

Original program
1 p.

Transformed program
1 p :- true.

Missing predicates. If the predicate was missing, that is, a predicate that
appears on the clause of another predicate but does not appear on the head of
any clause, then predicate :- false would be added as a clause to add value to
that predicate, as it could never be true.

Original program
1 q :- p.

Transformed program
1 q :- p.
2 p :- false.

15

3.1. A simple and iterative Design

Example program. In our example program, predicate p is part of an even
loop, so the following transformation would be performed:

Original program
1 p :- not q.
2 q :- t, not u.
3 q :- not r.
4 r :- not s.
5 s :- q, not p.

Program after step 1
1 p :- not q.
2 q :- t, not u.
3 q :- not r.
4 r :- not s.
5 s :- q, neg_1.
6 neg_1 :- not p.

3.1.2 Step 2: Generate the simplified dual rule(s) using
s(CASP)

In the second step, we generate the dual rule of the predicate to forget using
s(CASP).

Original clauses of predicate p.
1 p :- not q.

Dual rules for predicate p.
1 not p :- not p_1.
2 not p_1 :- q.

As we can see, the dual rules in s(CASP) are generated using additional clauses.
As these clauses could make the lecture of the result program difficult, we perform
a simplification, by replacing the additional predicates with their value:

Dual rules for predicate p.
1 not p :- not p_1.
2 not p_1 :- q.

Simplified dual rules for predicate p.
1 not p :- q.

Multiple clauses. If the additional predicates had several clauses, then a com-
bination of them would be performed, contemplating all possible combinations
that negate the predicate. For example:

Original clauses.
1 p :- q, r.
2 p :- s, t.

Dual rules for predicate p.
1 not p :- not p_1, not p_2.
2 not p_1 :- not q.
3 not p_1 :- not r.
4 not p_2 :- not s.
5 not p_2 :- not t.

Simplified dual rules for
predicate p.
1 not p :- not q, not s.
2 not p :- not q, not t.
3 not p :- not r, not s.
4 not p :- not r, not t.

16

3.1. A simple and iterative Design

Optimized dual rules. Note that s(CASP) by default makes a slight modifica-
tion to the dual rules generated to avoid exploring redundant options. Given the
last example, the dual rules generated by s(CASP) by default would be:

Dual rules for predicate p.
1 not p :- not p_1, not p_2.
2 not p_1 :- not q.
3 not p_1 :- q, not r.
4 not p_2 :- not s.
5 not p_2 :- s, not t.

On the second clause of each additional predicate, the negation of the first case
is added to avoid exploring that negation if the first one is already satisfied.
This optimization can be disabled using the flag -d. In our case, we will use the
non-optimized negations.

Example program. After performing the second step, we have obtained the
simplified negation for the predicate p, not p :- q, resulting in the following
program:

Program after step 1.
1 p :- not q.
2 q :- t, not u.
3 q :- not r.
4 r :- not s.
5 s :- q, neg_1.
6 neg_1 :- not p.

Program after step 2.
1 p :- not q.
2 q :- t, not u.
3 q :- not r.
4 r :- not s.
5 s :- q, neg_1.
6 neg_1 :- not p.
7 % Dual rules:
8 not p :- q.

3.1.3 Step 3: Forget the predicate and its negation

In the third step, we replace all appearances of the predicate in the body of the
clauses with the body of its own clauses. Then, we repeat the process with its
negation, this time replacing it with the body of the clauses of its dual rule. For
example, for the following program, we replace the appearance of p in line 2 for
the body of the clause shown in line 1 and the negation of p in line 3 with the
body of its dual rule displayed in line 5. After performing the replacement, the
clauses of the predicate to forget and its negation can be discarded, as they are
not going to be used in later steps.

17

3.1. A simple and iterative Design

Original clauses.
1 p :- not q.
2 r :- p.
3 s :- not p.
4 % Dual rules:
5 not p :- q.

Clauses after replacing p and not p.
1 p :- not q.
2 r :- not q.
3 s :- q.
4 % Dual rules:
5 not p :- q.

Replacing multiple clauses. In the case the clauses of the predicate or its
negation were more than one, then the number of clauses for a predicate (for
example, a) that depends on the predicate marked to forget (for example, p)
would be the number of clauses of a that do not contain p plus the product of
the number of original clauses of a that contains p and the clauses of p (or its
negation). For example, consider the following program:

Original clauses.
1 p :- q, r.
2 p :- s, t.
3

4 a :- p, c.
5 a :- d, e.
6

7 b :- p, c.
8 b :- p, d.

Clauses after replacing p.
1 a :- q, r, c.
2 a :- s, t, c.
3 a :- d, e.
4

5 b :- q, r, c.
6 b :- s, t, c.
7 b :- q, r, d.
8 b :- s, t, d.

Note that in this case, p has two clauses (lines 1 and 2 of the original clauses),
and a has one clause that contain p (line 3 of the original clauses). After replacing
p, plus the clause that was not altered, we have 1+2 = 3 clauses for a, in lines 1
to 3 of the program on the right.

In the case of predicate b, we have no clauses that do not contain p, two clauses
that contain p, and p has two clauses. If we compute the resultant clauses, we
have 0+(2∗2) = 4 clauses for b, which are displayed on lines 5 to 8 of the program
on the right.

Even if this replacement could provoke a computational explosion, it ensures that
all possible combinations that would satisfy the non-forgotten predicates remain
unchanged, and preserves as much as possible the semantics of the program.

Example program. If we consider the clauses of the original program where
the predicate p or its negation appears, the replacement would be the following:

Relevant program clauses
and dual rules after step 2.
1 neg_1 :- not p.
2 not p :- q. % dual

Program after replacing not p
for the clauses of the dual predicate.
1 neg_1 :- q.
2 not p :- q. % dual

18

3.1. A simple and iterative Design

Note that the (not negated) predicate p does not appear in any clauses. As we can
see in lines 1, 7, and 8 of the following program, after making the replacement,
the clauses of p and its dual are removed as they are no longer necessary:

Program after step 2.
1 p :- not q.
2 q :- t, not u.
3 q :- not r.
4 r :- not s.
5 s :- q, neg_1.
6 neg_1 :- not p.

7 % Dual rules
8 not p :- q.

Program after step 3.
1 q :- t, not u.
2 q :- not r.
3 r :- not s.
4 s :- q, neg_1.
5 neg_1 :- q.

3.1.4 Step 4: Clean true/false and add double negations
to preserve even loops

In the fourth step, we clean the clauses that contain true or false, and we add
double negations to the auxiliary predicates added in the first step.

Cleaning true clauses. If the program has clauses that contain true, an atom
that always holds, then that atom is removed. As we can see in the following
program, if true was the only atom in the clauses of a predicate, then that
predicate is transformed into a fact, as it will always hold.

Original clauses.
1 p :- true.
2 q :- r, true, s.

Clauses after cleaning true.
1 p. % p is now a fact
2 q :- r, s.

Cleaning false clauses. If the program has clauses that contain false, an atom
that never holds, then those clauses are removed as they cannot be satisfied. As
we can see in the following program, if false was the only atom in the clauses
of a predicate, then that predicate is transformed into a missing predicate, as it
will never hold.

Original clauses.
1 p :- false.
2 q :- r, false, s.
3 q :- t.

Clauses after cleaning false.
1 % p is now a missing predicate
2 q :- t.

Adding double negations. If an auxiliary predicate was added in the first step,
it is necessary to preserve the original even loop to add the operator not not to
each appearance of that predicate on a body of a clause. Note that, as we can see
on the following program on line 2, if the auxiliary predicate was negated, three
consecutive negations are transformed into a single negation.

19

3.2. Implementation as s(CASP) extension

Original clauses.
1 p :- r, neg_1.
2 q :- s, not neg_1, t.

Clauses after adding not not.
1 p :- r, not not neg_1.
2 q :- s, not neg_1, t.

Example program. In the example program, we have the additional predicate
neg_1 on line 5. We can see that, on the program on the right, after performing
the fourth step, line 5 has been modified by adding the necessary double negation.

Program after step 3.
1 q :- t, not u.
2 q :- not r.
3 r :- not s.
4 s :- q, neg_1.
5 neg_1 :- q.

Program after step 4.
1 q :- t, not u.
2 q :- not r.
3 r :- not s.
4 s :- q, not not neg_1.
5 neg_1 :- q.

3.1.5 (Optional) Step 5: Transform double negations into
even loops.

After all predicates have been forgotten, the optional final step is performed. In
this fifth step, we convert any double negations that may appear in the program
into even loops, with the assistance of another auxiliary that follows the trans-
formation performed in step 1. This modification allows the resulting program
to run with s(CASP), as this reasoner does not natively support the not not
operator.

Example program. In our example program, the double negation present in
line 4 is replaced with the negated predicate not neg_2, and the corresponding
clause has been added in line 6.

Program after step 4.
1 q :- t, not u.
2 q :- not r.
3 r :- not s.
4 s :- q, not not neg_1.
5 neg_1 :- q.

Program after step 5.
1 q :- t, not u.
2 q :- not r.
3 r :- not s.
4 s :- q, not neg_2.
5 neg_1 :- q.
6 neg_2 :- not neg_1.

3.2 Implementation as s(CASP) extension

The algorithm is implemented over s(CASP) (Arias et al. 2018) in Ciao Prolog.,
which is available at the following repository: https://gitlab.software.imdea.
org/ciao-lang/sCASP.

20

https://gitlab.software.imdea.org/ciao-lang/sCASP
https://gitlab.software.imdea.org/ciao-lang/sCASP

3.3. Preliminary validation through examples

To invoke the fCASP operator it is necessary to run s(CASP) with the flag
--forget. This flag follows a specific structure, --forget=LIST[/F], where

• LIST is the list of predicates to be forgotten, e.g., 'p,q'
• F is an optional flag to determine if step 5 of the fCASP algorithm is executed

(by passing 1, default value) or not (by passing 0).

1 f_scasp([Pred|Preds], P_0, P_Forgetting, Flag) :-
2 transform_even_loop(Pred, P_0, P_1a, Neg_Pred), % Step 1
3 transform_fact_missing(Pred, P_1a, P_1b),
4 transform_auto_calls(Pred, P_1b, P_1c),
5 gen_dual(Pred, P_1c, Dual_Rule), % Step 2
6 forget_pred(Pred, Dual_Rule, P_1c, P_3), % Step 3
7 restore_even_loop(Neg_Pred, P_3, P_4a), % Step 4
8 restore_facts_missing(P_4a, P_4b),
9 f_scasp(Flag, Preds, P_4b, P_Forgetting). % Repeat 1,2,3,4

10 f_scasp([], P_Forgetting, P_Forgetting, 0). % Skip Step 5
11 f_scasp([], P_Forgetting, P_Scasp, 1) :-
12 transform_double_negations(P_Forgetting, P_Scasp). % Step 5

Figure 3.1: Main function of fCASP

In Figure 3.1, we can observe an approximation of the main function of fCASP .
The main call of the operator involves a recursive call where the parameters are
as follows: the first parameter is the list of predicates pending to be forgotten, the
second parameter is the current state of the program (which will undergo changes
throughout the iteration), the third parameter is the final program that will be
returned, and the fourth parameter indicates whether step 5 will be performed
(with a default value of 1) or not (with a value of 0).

During the first iteration, the predicate list takes the value of LIST, which is the
mandatory parameter of the flag. Subsequently, the recursive function will be
invoked in line 9 to forget the remaining predicates. When there are no predicates
left to forget, line 10 or lines 11 and 12 are executed based on the value of the
Flag parameter, which obtains its value from the optional flag F.

3.3 Preliminary validation through examples

In this section, we evaluate examples from the literature. We will apply the
operator fCASP to these examples and compare the results w.r.t. the proposals
described in those articles, to highlight the advantages of using fCASP .

21

3.3. Preliminary validation through examples

3.3.1 Forgetting predicates in even loops

We have seen that fCASP can forget atoms that incur in even loops by adding
additional predicates. This is a form of conserving the symmetry in answer
sets (Knorr and Alferes 2014), that is, preserving the predicates not forgotten
in the answer sets even when adding additional rules, as strong persistence can-
not be achieved (in some cases) without adding additional predicates (Gonçalves,
Knorr, and Leite 2016; Berthold et al. 2019).

P1 = Example 3 from
(Gonçalves, Knorr, and Leite 2016)
1 a :- p.
2 b :- q.
3 p :- not q.
4 q :- not p.

fCASP (P1,{p,q})

1 a :- not not neg_2.
2 b :- not not neg_1.
3 neg_1 :- not not neg_1.
4 neg_2 :- not neg_1.

The program presented in Example 3 by Gonçalves at el. in 2016 (Gonçalves,
Knorr, and Leite 2016) has the models {a, p} and {b, q}. The result of the
generated program using fCASP has the models {a, neg_2} and {b, neg_1}. I.e.,
we obtain the same models (ignoring the presence of the auxiliary predicates
neg_1 and neg_2).

In the following example, we slightly modify P1 to check the influence of more
complex even loops, due to the presence of r in lines 4 and 5.

P1′ = Variant of P1

1 a :- p.
2 b :- q.
3 p :- not q.
4 q :- r.
5 r :- not p.

fCASP (P1′ ,{p,q})
1 a :- not not neg_2.
2 b :- r.
3 r :- not not neg_1.
4 neg_1 :- r.
5 neg_2 :- not r.

Note that P1′ has the models {r, q, b} and {p, a}, and the result of forgetting
program using fCASP has respectively the models {r, b, neg_1} and {a, neg_2},
i.e., the same models ignoring p, q, and the auxiliary predicates.

22

3.3. Preliminary validation through examples

3.3.2 Forgetting predicates present in double negations

P2 = Example 4 from
(Knorr and Alferes 2014)
1 p :- not not p.
2 q :- p.
3 r :- not p.

fCASP (P2,{p})

1 q :- not neg_1.
2 r :- not not neg_1.
3 neg_1 :- not not neg_1.

Consider the program presented in Example 4 by Knorr and Alferes in
2014 (Knorr and Alferes 2014). In the work, the authors mention that it is
not possible to satisfy strong persistence when we forget p. They explain that
the program P2 has two models {p, q} and {r} and that adding either q or r as
facts to P2 simply adds the atom to both answer sets, i.e., P2 ∪ {q} has models
{p, q} and {q, r} and P2 ∪ {r} has models {p, q, r} and {r}. They require
that P ′

2 = fxx(P2,p), where fxx represents whatever forgetting operator is, has
two models {q} and {r}, and that P ′

2 ∪ {q} and P ′
2 ∪ {r} also both have two

models, namely {q} and {q, r}, and {r} and {q, r} respectively. They consider
that such a program P ′

2 does not exist over {q, r}, because (a) it is required to
be symmetric in q and r, (b) it is needed that precisely only one of q and r is
true in each answer set of P ′

2, but (c) adding either of the two explicitly, must not
avoid the existence of an answer set that contains the other and in which both
atoms are true —note that if we restrict P ′

2 to have no auxiliary predicates, then
P ′

2 does not exist. Since it is impossible to satisfy these conditions without an ad-
ditional predicate, we propose the use of auxiliary predicates, and as we show in
this example with them it is possible to achieve the desired result. I.e., if we add
{r} to the result of forgetting program fCASP (P2,{p}), we get the models {r, q}
and {r, neg_1}, while adding {q}, the stable models are {q} and {q, r, neg_1}.
In both cases, ignoring the additional predicate leads to the desired solution that
is sought when p is forgotten, and which could not be obtained without the use
of the auxiliary predicate.

This transformation applies in the same way to other examples such as Example 4
from (Gonçalves, Knorr, and Leite 2016).

3.3.3 Forgetting multiple predicates regardless of the or-
der

P3 = Example 1 from
(Berthold 2022)
1 a :- p, q.
2 q :- not p.
3 p :- not not p.

fCASP (P3,{p,q}) and
fCASP (P3,{q,p})
1 a :- not neg_1, not not neg_1.
2 neg_1 :- not not neg_1.

23

3.3. Preliminary validation through examples

Example 1 by Berthold in 2022 (Berthold 2022) is a perfect program to test the
behavior of an operator against an even loop while forgetting multiple predicates,
iteratively in different orders. The models of this program are {q} and {p}, and
therefore after forgetting the atoms p and q in any order the expected models are
the empty models, i.e., {} and {}.

The operator fSP , when applied once for forgetting q and then again for p does not
report the same result as when forgetting p and then q. The result of the generated
program, fSP (P3,{q,p}), is empty, i.e., it has a unique model, {} (consistent with
the expected results). But, the result of the generated program, fSP (P3,{p,q}),
is a:- not not a, which have {a}, and {} as stable models (with model {a} a
being a non-expected model).

Applying fCASP in both cases, by forgetting first p and then q or forgetting first
q and then p, we obtain the same result of generated program, shown above, and
it has the stable models {} and {neg_1}, which are the desirable models.

3.3.4 Comparing the required auxiliary predicates

P4 = Example 5 from
(Berthold et al. 2019)
1 q :- not not q, b.
2 a :- q.
3 c :- not q.

fAC(P4,{q}).

1 a :- b, δq.
2 c :- not δq.
3 c :- not b.
4 δq :- not not δq.

fCASP (P4,{q}).

1 a :- not neg_1, b.
2 c :- not not neg_1.
3 neg_1 :- not not neg_1.
4 neg_1 :- not b.

In the result of the generated program described in Example 5 by Berthold et. al
in 2019 (Berthold et al. 2019), which is located at the center of the figure above,
the operator fAC introduces an auxiliary predicate to represent the as-dual of q,
the predicate to forget.

The stable models of this program are {c} and {c, δq}, while for The result of the
generated program using fCASP the stable model is unique, {c, neg_1}. While
in both cases the stable models are equivalent (ignoring the auxiliary predicate)
to the stable model of the original program, {c}, fAC returns two models instead.

24

Chapter 4

(Legal and Ethical) Motivation

In this chapter, we provide further details about the motivation of this work,
focusing on the legal and ethical aspects of the goal of fCASP and the use cases
defined.

First, we discuss the conflict between the users’ right to receive an explanation for
high-risk decisions made by AI decision-making systems and the right to main-
tain the privacy of sensitive information. Specifically, we examine a particularly
sensitive criterion employed by the system that determines whether a candidate
is accepted into the renewable energy community: being a victim of gender-based
violence. Then, we describe the reasoning behind the energy assignment system,
how it can be aligned with values, and how we consider fairness in our energy
distribution process.

4.1 Right to Explanation vs. Right to Privacy

As we mentioned before, we will apply the forgetting operator to a real use case,
the admission of new members to a local renewable energy generation scheme
within an agricultural cooperative, and the distribution of the energy generated.

First, to streamline the admission of a potential new member of the local re-
newable energy community and the assignation of the resource, it is proposed
an automatic decision model, s(LAW) by (Arias et al. 2023), which can not only
determine whether an applicant will be admitted or not (or it is uncertain) and
the energy coefficient assigned based on their circumstances, but also provide
justifications for its decision since it is executed using s(CASP). The explainabil-
ity of the model is fundamental, as this process needs to be committed to the
transparency and fairness of its methods for it to be trustworthy. In addition,
justifications allow a better understanding of the logic behind a decision, helping

25

4.1. Right to Explanation vs. Right to Privacy

the human controller that needs to review automatically processed decisions that
have a significant effect on the subject of the decision, as required by Article 22
of the General Data Protection Regulation (GDPR).

However, if the places that can be assigned are limited, it could be that a member
is not accepted due to the demand for places being bigger than the offer, convert-
ing this process into a competitive procedure. In that case, part of the justification
is showing that other candidates have scored higher than them, being necessary
to publicize the list of candidates accepted, although this publicity must include
the final result of the ranking, so that it does not imply indiscriminate access to
information, or including partial results that may respond to sensitive data or
confidential information. Taking that scenario into account, we can assume that
the explanations must be accessible to all stakeholders (and the controller), which
may lead to the disclosure of sensitive information in the public admission lists
or the information transmitted to individuals appealing the list. E.g., one type of
sensitive information that is collected is whether the applicant has been affected
by gender-based violence, given that this is one of the parameters in the filtering
process. This information should not be disclosed in accordance with Organic
Law 1/2004, which mandates comprehensive protection measures against gender
violence. In particular, Article 63 establishes that:

Art. 63 Data protection and limitations on publicity: In pro-
ceedings and procedures related to gender violence, the privacy of the
victims shall be protected; in particular, their personal data, those
of their descendants, and those of any other person in their care or
custody.

For this reason, a candidate may object to the publication of his/her admission
for security reasons, as a victim of gender-based violence, in application of Art.
18.1.d of the General Data Protection Regulation.1

To solve the challenge of satisfying both explainability and privacy, it is needed
that the justifications do not reveal sensitive information, which can be achieved
using forgetting, a technique that can “hide” the sensitive information in the
publication of the list of those admitted to the plan and, in any case, on the
information to be sent to whoever, if any, files an appeal against the list. The
subsequent sections elaborate on the criteria upon which the programs (subject
to forgetting) are founded, providing insights into their implementation and as-
sessing the outcomes of applying the operator in Chapter 5.

1REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND OF THE
COUNCIL of April 27, 2016 relating to the protection of natural persons with regard to the
processing of personal data and the free circulation of these data and repealing the Directive
95/46/EC (General Data Protection Regulation) https://www.boe.es/doue/2016/119/
L00001-00088.pdf.

26

https://www.boe.es/doue/2016/119/L00001-00088.pdf
https://www.boe.es/doue/2016/119/L00001-00088.pdf

4.2. Requirements for the admission of a farmer

4.2 Requirements for the admission of a farmer

A community involved in local renewable energy generation can be likened to a
renewable energy community. Following this idea, we can center the criteria for
admission on the requirements, beliefs, and standards of these communities. In
Spain, the requirements for membership in a renewable energy community (REC)
are regulated by Royal Decree 23/2020, which defines RECs as:

Article 4. Amendment of Law 24/2013, of December 26,
2013, on the Electricity Sector: Renewable energy communities,
which are legal entities based on open and voluntary participation,
autonomous and effectively controlled by partners or members that
are located in the vicinity of renewable energy projects owned and
developed by such legal entities, whose partners or members are nat-
ural persons, SMEs or local authorities, including municipalities, and
whose primary purpose is to provide environmental, economic or so-
cial benefits to their partners or members or to the local areas where
they operate, rather than financial gain.

From this definition, we can deduce the following requirements: a member must
be located near a power generation point, must have volunteered, and must sup-
port positive development for the overall community. The community may add
additional requirements to specify compliance with the latter point.

The first point is satisfied as one requisite to be admitted is to generate a minimum
amount of renewable energy. All members have volunteered to form part of the
community, which covers the second point. Among the criteria established by the
community to comply with the positive (environmental or social) development
of the local area are: (i) maintaining low carbon emissions resulting from the
farmer’s agricultural activities, (ii) providing a minimum standard of work quality
for workers, (iii) engaging in activities that protect local wildlife (for example,
dedicating a portion of land to flower cultivation for bee preservation), and/or
(iv) fulfilling a specific condition (such as being a victim of gender-based violence
or having a disability) is a criterion for which the community offers additional
support.

If processes to determine admission to the community were automated, through
the use of Artificial Intelligence systems, according to the proposed AI Regulation
by the EU, these systems would be classified as high risk, unless the information
output from the system is merely incidental to the final action or decision to be
taken (Article 6 and Annex III of the proposed AI Regulation). Therefore, it
would be subject to strict compliance with the requirements for such systems,
including impartiality, transparency, and explainability.2

2In particular, human agency and oversight, technical robustness and safety, privacy and data

27

4.3. Energy Assignment in Cooperatives

4.3 Energy Assignment in Cooperatives

This section explains the importance of making decisions taking into account
their alignment with values. Specifically, we present as a use case the generation
and distribution of energy in agricultural cooperatives.

4.3.1 Ethical Values in Energy Management

Agricultural cooperatives, in which farmers share their assets, allow better access
to equipment, services, and supplies, reducing costs that would be difficult to
obtain individually. These cooperatives are already well established in the sector,
being reported as a beneficial factor to the technological and economic growth of
farms, as well as to social and environmental improvement, being these changes
are more pronounced in small cooperatives (Kustepeli et al. 2023; Lin et al. 2022).

One of the shared resources is energy, which, when generated locally, represents
a good solution to address the issue of inadequate energy connectivity frequently
experienced in rural areas. In addition, local generation reduces the energy de-
mand on the general energy grid by decentralizing energy production, a very
important point given the growing energy demand of recent decades.

In Spain, the creation of a renewable energy community is regulated by Royal
Decree-Law 23/2020, but the criteria for the distribution of energy are at the
discretion of the community itself. Deciding how to generate this local energy
can be aligned with values that promote positive change on a common ground.
For example, we could use as a guide the values of environmental stewardship
and climate change mitigation, defined as two of the ten objectives stated in
the European Common Agricultural Policy (CAP) for the years 2023 to 2027.
Consideration of these values would imply an increase in the amount of energy
generated from green and renewable sources.

The energy production is focused on renewable sources. Because of this charac-
teristic, the process itself also helps the alignment with other values, for example,
competitiveness, thanks to the reduced cost of green energy (Osman et al. 2023)
and the compatibility with land exploitation, thereby improving the overall ben-
efits obtained as discussed in (Jain et al. 2021).

governance, transparency, diversity, non-discrimination and fairness, societal and environmental
wellbeing and accountability, vid. Proposal for a Regulation of the European Parliament and of
the Council laying down harmonized rules on artificial intelligence (artificial intelligence Act),
2021.

28

4.3. Energy Assignment in Cooperatives

4.3.2 Energy Distribution considering Fairness

Once we have defined the sources of power generation we have to determine the
criteria for distribution within the cooperative. In this case, we can consider other
objectives defined on the European Common Agricultural Policy, e.g., it could
be taken into account generational renewal, rewarding the farmers which creates
opportunities and formation in the sector for new generations, or biodiversity
care, rewarding farmers which takes into account the preservation of the local
wildlife. In general, the distribution of the generated energy is expressed in energy
distribution coefficients, which are agreed upon through democratic community
discussion within the cooperative. Usually, these values, or, in similar contexts,
the cost of the energy consumed, are assigned based on consumption levels.

On the other hand, for making a fair energy distribution in a residential complex,
different tariff designs have been proposed, contemplating the costs, consumption,
and use of the energy of the consumers (Roberts, Sharma, and MacGill 2022).
Some adaptations made to make the system fairer are proposing discounts to
promote sustainable consumption while reducing the burden of the cost of the
system implementation on the initial members.

To promote a better alignment with positive values that can improve the com-
mon well-being of the community, we propose an alternative approach: using the
farmers’ adherence to the ethical values of the cooperative to distribute the en-
ergy. This approach would reward the farmers who benefit the overall community
and/or encourage the rest of the members to emulate their actions. For example,
rewarding a farmer who uses environmentally friendly fertilizers with improved
energy supply conditions may prompt the community to adopt similar practices,
leading to a vision more aligned with the care of the environment within the co-
operative. Another case could be punishing a farmer who misuses the resources
provided, fomenting a resource-saving, sustainable behavior among the members
(but it is not always possible to include penalties when distributing resources in
cooperatives).

In this context, it is interesting to consider intelligent systems that make it possi-
ble to automate distribution decisions to avoid partial or unfair answers. The use
of machine learning has been explored to predict and optimize various aspects
of renewable energy communities, including storage, management, and energy
stability of the energy (Hernandez-Matheus et al. 2022). The automatization of
the allocation decision can streamline the whole process, especially when complex
variables are involved, and can ensure a correct and fair distribution, as these sys-
tems, if well-designed and not ill-intended, do make impartial judgments. How-
ever, most black-box models cannot provide justifications for their decisions. This
lack of transparency can affect the trust of the users in the system, hampering
its implementation. Moreover, if the system does not explain the reason behind
the solutions it proposes, it can not be assured that this solution is not biased.

29

4.3. Energy Assignment in Cooperatives

In addition, the new Regulation on AI, by the European Union, sets a minimum
requirement on explainability for models that are considered high-risk.

However, as we have already mentioned, these explanations may result in a leak-
age of private, confidential, or legal information belonging to users. In this case,
there could be not only a potential leakage of sensitive information, which vio-
lates the General Data Protection Regulation (GDPR), but also business secrets
such as the salary complements of the workers, can be revealed, which may affect
competitiveness. Therefore, we propose the use of fCASP to forget sensitive infor-
mation and preserve the privacy and confidentiality of the users, while preserving
the explainability of the model.

30

Chapter 5

Transparent and fair energy
assignment using fCASP

This chapter will describe the implementation of both decision systems, i.e., the
admission system and the energy assignment system. The first system is a use
case in propositional logic, while the second one is implemented in First Order
Logic.

In the implementation of both systems, for the sake of simplicity, we assume
an agricultural cooperative with four farmers/members: Bob, Adam, Alex, and
Lucy. Only the last three members satisfy the requirements for being admitted
to the energy plan.

5.1 Use case in Propositional Logic

In the following section, the design and implementation of the model that will
manage the admission of candidates to the energy generation plan will be detailed.
This model will use the criteria established in Section 4.3.1.

In this first system, to know if a candidate will be accepted, we use a common
program that models the rules (membership_acceptance.pl), a program contain-
ing the query (query.pl), and the candidate’s specific program which contains a
list of facts describing the candidate’s characteristics. For example, to find out
whether Adam will be admitted, the following command is invoked:

scasp --tree -n0 membership_acceptance.pl adam.pl query.pl

where --tree indicates that we want to obtain a justification in tree format for
the decision, and -n0 indicates that we want to obtain all possible answers.

31

https://github.com/Lu-all/energy-distribution-with-scasp-and-fcasp/blob/main/membership/membership_acceptance.pl
https://github.com/Lu-all/energy-distribution-with-scasp-and-fcasp/blob/main/membership/query.pl

5.1. Use case in Propositional Logic

5.1.1 Modeling a fair candidate selection system

This section details the implementation of the decision system for the acceptance
of potential candidates for the power generation plan following the criteria de-
scribed in Section 4.3.1. The common rules that model the criteria are established
in the file membership_acceptance.pl.

For an applicant to be admitted, they must meet three conditions: a minimum
resource contribution, comply with specific requirements that show a commitment
to the community or a special situation, and maintain a low energy consumption
(or green energy use) profile.

First, meeting the established minimum resource contribution to the cooperative
is represented by a fact, i.e. it is represented as an inherent characteristic of a
candidate that will be reflected in their specific module. This characteristic is
called met_minimum_resource_contribution in the implemented programs.

Second, the requirements include having low carbon emissions, maintaining fair
working conditions, having measures for the protection of local flora and fauna,
or complying with special conditions established to favor disadvantaged minority
groups.

To prove that the agricultural system implemented by the farmer is low in carbon
emissions, the applicant can either present a valid external certificate to confirm
this (low_carbon_certification) or submit (and pass) his system to a test con-
ducted by the cooperative itself (cooperative_test_passed), which analyzes the
energy consumption of the system, the energy sources used and the emissions
produced. If the system passes the test, it will be registered in the database and
a certificate of energy efficiency will be issued.

Similar to the minimum contribution, the demonstration of a quality work envi-
ronment (met_minimal_work_quality) above a certain threshold or the adoption
of measures to protect autonomous wildlife (wildlife_protection) is given by
an inherent characteristic of the candidate, modeled in the form of a fact. These
facts are then checked against the cooperative’s database. On the other hand,
there are two special social conditions for belonging to a disadvantaged minority
group: one is to be a victim of gender-based violence, and the other is to have a
degree of disability higher than 15%.

Finally, to be eligible, applicants must also demonstrate that they have an agri-
cultural system that requires little energy from the grid, either by opting for
low-consumption technologies or by generating (green) energy for their own con-
sumption.

32

https://github.com/Lu-all/energy-distribution-with-scasp-and-fcasp/blob/main/membership/membership_acceptance.pl

5.1. Use case in Propositional Logic

1 low_consumption:-
2 cooperative_test_passed.
3 low_consumption:-
4 energy_efficiency_certificate.
5 low_consumption:-
6 green_energy_generation.
7

8 energy_efficiency_certificate:-
9 external_certificate.

10 energy_efficiency_certificate:-
11 cooperative_test_passed.
12

13 cooperative_test_passed:-
14 onsite_exam_passed.
15 cooperative_test_passed:-
16 green_energy_generation,
17 not last_exam_failed.
18

19 last_exam_failed:-
20 not energy_efficiency_certificate.

Figure 5.1: Clauses that verify the low grid energy demand of the candidate.

In the following lines of membership_acceptance.pl, it is modeled that in order
to prove that the technologies used are energy efficient, the system can be tested
by the cooperative (cooperative_test_passed) or an energy efficiency certificate
(energy_efficiency_certificate) can be presented. This certificate can be ei-
ther an external certificate or the certificate issued by the cooperative when the
test is passed. If an applicant demonstrates that it generates energy from green
sources, i.e. the second case in the demonstration of low consumption, it will also
be considered to have passed the cooperative test unless the (same) system has
failed a prior test.

Since submitting these certificates or taking the exam is optional, some uncer-
tainty is modeled using an even loop to account for the case where a candidate
meets the above requirements but has not submitted the appropriate documen-
tation. In such a case, the candidate will be asked for the documentation if it is
required to be admitted to the plan.

5.1.2 Evaluation of the propositional use case

In this section, we apply fCASP to the defined use case by invoking s(CASP) with
the flag --forget (as detailed in Section 3.2).

membership_acceptance.pl

adam.pl

adam_forgotten.plfCASP

Figure 5.2: Input and output files for the application of fCASP

to forget sensitive data of Adam

33

https://github.com/Lu-all/energy-distribution-with-scasp-and-fcasp/blob/main/membership/membership_acceptance.pl
https://github.com/Lu-all/energy-distribution-with-scasp-and-fcasp/blob/main/membership/membership_acceptance.pl
https://github.com/Lu-all/energy-distribution-with-scasp-and-fcasp/blob/main/membership/adam.pl
https://github.com/Lu-all/energy-distribution-with-scasp-and-fcasp/blob/main/membership/adam_forgotten.pl

5.1. Use case in Propositional Logic

First, we analyze the result of the generated programs considering different sce-
narios. Next, we compare the justifications for the original program against a
shorter justification and the justifications for the result of the generated pro-
gram. Figure 5.2 shows input and output1 files for the application of fCASP to
forget sensitive data of Adam:

All files used/generated in this evaluation are available at https://github.com/
Lu-all/energy-distribution-with-scasp-and-fcasp, and we used s(CASP) ver-
sion 0.24.05.29.

Forgetting sensitive data

First, let us focus on the predicate met_requirement, and consider
that the following member’s characteristics low_carbon_certification,
met_minimal_work_quality, wildlife_protection, special_condition,
gender_based_violence_victim, and disability_condition are sensi-
tive and must be forgotten, while having passed the cooperative test
(cooperative_test_passed) is not considered sensitive information.

Adam: The remaining met_common_requirement’s clauses after forgetting are:
1 met_requirement :-
2 low_carbon_emissions.

3 low_carbon_emissions :-
4 cooperative_test_passed.

where the clause in line 1, and the fact that Adam has proved that the sys-
tem has low carbon emissions through the cooperative exam remain because
low_carbon_emissions and cooperative_test_passed are not sensitive data.

Alex: S/he is a victim of gender-based violence and has a disability condition.
Therefore, after forgetting the clauses that remain are:
1 met_requirement :-
2 low_carbon_emissions.
3 met_requirement.
4 low_carbon_emissions.

5 low_carbon_emissions :-
6 cooperative_test_passed.
7 cooperative_test_passed.

where the requirements are met because of meeting a low level of carbon emis-
sions and/or other motives (being a victim of gender-based violence and having
a disability condition), but even if these characteristics are taken into account,
they do not appear in the program, as we can see on the clauses.

1Program obtained by invoking scasp membership_acceptance.pl adam.pl
--forget='low_carbon_certification,met_minimal_work_quality,wildlife_protection,
special_condition,gender_based_violence_victim,disability_condition,
energy_efficiency_certificate,green_energy_generation,external_certificate,
onsite_exam_passed'/1

34

https://github.com/Lu-all/energy-distribution-with-scasp-and-fcasp
https://github.com/Lu-all/energy-distribution-with-scasp-and-fcasp

5.1. Use case in Propositional Logic

Bob: In this case, the clauses that remain are:
1 met_requirement :-
2 low_carbon_emissions.

3 low_carbon_emissions :-
4 cooperative_test_passed.

Since Bob does not satisfy the cooperative_test_passed (thereby, Bob does not
satisfy met_requirement), we would not obtain a model for ?-accept_membership,
however, one additional advantage of s(CASP) is its ability to provide jus-
tifications for the absence of models, by invoking the negated query, ?-not
accept_membership, as we discuss in Section 5.1.2.

Lucy: The left clauses for Lucy are the same as Bob’s, but s/he produces green
energy and has not failed the last cooperative exam. Therefore, based on these
achievements, it is assumed that they have the potential to pass the cooperative
exam and its validation would be needed for acceptance into the plan.

Forgetting data involving even loops

The criteria for accrediting a low level of grid energy consumption, modeled
by the predicate low_consumption in Fig. 5.1, includes an even loop, and
therefore, forgetting sensitive data around these criteria allows us to high-
light the potential of fCASP . Note that auxiliary predicates are sometimes
necessary to preserve the even loop. The sensitive data that we consider
in this scenario are energy_efficiency_certificate, green_energy_generation,
external_certificate, and onsite_exam_passed.A comparison of the justifica-
tions for these farmers is discussed in the following section.

Adam: The only low_consumption clauses remaining after forgetting are

1 low_consumption :-
2 cooperative_test_passed.
3 cooperative_test_passed.
4 last_exam_failed :-
5 not neg_2.

6 neg_2 :-
7 not neg_1.
8 neg_1 :-
9 not cooperative_test_passed.

In this case, even if the even loop does not disappear, and the predicate always
succeeds (lines 1 to 3), because the s/he passed an on-site exam, information that
is hidden in the model and the justifications. The justifications of the original
program and the version obtained after forgetting are compared in the following
section.

35

5.1. Use case in Propositional Logic

Alex: In this case, the clauses that remain are:
1 low_consumption.
2 low_consumption :-
3 cooperative_test_passed.
4

5 last_exam_failed :-
6 not neg_2.
7 neg_2 :-
8 not neg_1.

Note that in this case the even loop has been resolved through having an external
certificate, which is considered sensitive information, so the even loop has disap-
peared, and low_consumption has been converted into a fact (line 1) that always
holds as the characteristic that proved this point has been hidden. Lines 5 to 8
model the conditions for having failed the last exam, but as neg_1 (line 8) does
not appear in the head of any clause, it is always false.

Bob: In this case, the clauses related to low_consumption are the same as those
for Alex, but without the first line as Bob did not meet any clause that demon-
strates this requirement.

Lucy: In this case, the clauses related to low_consumption are the same as
those for Alex for the same motive, but in this case, the sensitive characteristic
is generating green energy.

Comparing the justifications generated using s(CASP)

In this section, we compare the different justifications generated by s(CASP) for
the original program and the forgotten versions of the four members.

Original: By invoking scasp -d -n0 --tree membership_acceptance.pl
adam.pl query.pl it generates all the answers (flag -n0) with their justification
(flag --tree) of the original program, in membership_acceptance.pl, and Adam,
in adam.pl, for the query ?-accept_membership, in query.pl (the justifications are
available in adam_justification.txt).

Short: To manipulate the justifications, and only show specific predi-
cates, s(CASP) provides the flag --short and the directive #show, which
can be used to select the predicates to be shown —query.pl selects those
predicates that are not sensitive— and by invoking ‘scasp -d -n0 --short
--tree membership_acceptance.pl adam.pl query.pl’, s(CASP) generates the
answers and justification without the sensitive data for Adam (available in
adam_short_justification.txt).

Forgotten: Finally, by invoking scasp -d -n0 --tree adam_forgotten.pl
query.pl we obtain the answers and justifications of the result of the generated
program (available in adam_forgotten_justification.txt).

36

https://github.com/Lu-all/energy-distribution-with-scasp-and-fcasp/blob/main/membership/membership_acceptance.pl
https://github.com/Lu-all/energy-distribution-with-scasp-and-fcasp/blob/main/membership/adam.pl
https://github.com/Lu-all/energy-distribution-with-scasp-and-fcasp/blob/main/membership/query.pl
https://github.com/Lu-all/energy-distribution-with-scasp-and-fcasp/blob/main/membership/justifications/adam_justification.txt
https://github.com/Lu-all/energy-distribution-with-scasp-and-fcasp/blob/main/membership/query.pl
https://github.com/Lu-all/energy-distribution-with-scasp-and-fcasp/blob/main/membership/justifications/adam_short_justification.txt
https://github.com/Lu-all/energy-distribution-with-scasp-and-fcasp/blob/main/membership/justifications/adam_forgotten_justification.txt

5.1. Use case in Propositional Logic

1 low_consumption :-
2 energy_efficiency_certificate :-
3 proved(cooperative_test_passed).

(a) Original program.

1 low_consumption :-
2 proved(cooperative_test_passed).

(b) With flag --short or
after applying fCASP .

Figure 5.3: Justifications of answer 1 for ?-low_consumption and Adam.

Adam: For the original program, the query ?-low_consumption generates two
answers because there are two possible ways to accredit this requirement. In both
cases, the justifications are based on sensitive data, so the short justifications
are identical. Figure 5.3 displays a comparison of the original and short first
justification of the original program and the justification of the program generated
by fCASP . In addition, line 3 of the original justification (line 2 of the short one)
shows that the low level of carbon emissions was demonstrated by the cooperative
test, which was passed. The result of the generated program only outputs one
answer, which is identical to the short justifications.

Alex: In this case, the low consumption levels are always proven through
an external certificate. As this case is similar to the first one, a pro-
found analysis is not needed. However, the corresponding files contain-
ing the justifications (alex_justification.txt, alex_short_justification.txt, and
alex_forgotten_justification.txt are available in the repository).

Bob: As we mentioned before for the query ?-accept_membership there is no
model, meaning that s/he is not accepted in the plan. So to understand why
s/he is not accepted, we can query ?-not accept_membership and check the dif-
ferent answers/justifications, as before. Additionally, we use the flag -d, which
disables certain optimizations regarding the generation of dual rules. For the sake
of brevity let us only compare the justification for the second answer. Fig. 5.4a
shows the first justification for the original program where we observe that all the
predicates required to meet the common requirements are listed, and (ii) Fig. 5.4b
shows the short justification which in this case is equal to the justification ob-
tained from the result of generated program.

Lucy: Since the model to accredit the low demand of grid energy (Fig. 5.1) con-
tains even loops, in this scenario the first answer for the query ?-low_consumption
succeeds under some assumptions. Fig. 5.5 compares the three possible justifi-
cations for this answer: (i) Fig. 5.5a shows the justification for the first answer
of the original program, where the low demand has been accredited assuming
(and later proving) that the member has an energy efficiency certificate (label
proved/1 in line 2). (ii) Fig. 5.5b shows the short justification for the first answer

37

https://github.com/Lu-all/energy-distribution-with-scasp-and-fcasp/blob/main/membership/justifications/alex_justification.txt
https://github.com/Lu-all/energy-distribution-with-scasp-and-fcasp/blob/main/membership/justifications/alex_short_justification.txt
https://github.com/Lu-all/energy-distribution-with-scasp-and-fcasp/blob/main/membership/justifications/alex_forgotten_justification.txt

5.2. Use case in First Order Logic

1 not accept_membership :-
2 not met_requirement :-
3 not low_carbon_emissions :-
4 not low_carbon_certification,
5 not cooperative_test_passed :-
6 not onsite_exam_passed,
7 not green_energy_generation.
8 not met_minimal_work_quality,
9 not wildlife_protection,

10 not special_condition :-
11 not gender_based_violence_victim,
12 not disability_condition.

(a) Original program.

1 not accept_membership :-
2 not met_requirement :-
3 not low_carbon_emissions :-
4 not cooperative_test_passed.

(b) With flag --short or
after applying fCASP .

Figure 5.4: Justifications of answer 2 for ?-not accept_membership and Bob.

that not only hides the sensitive data, but also that at some point in the execu-
tion some assumptions were necessary to satisfy the query (that is, the lines with
the label proven), and (iii) Fig. 5.5c shows the justification for the first answer
of the program after applying fCASP , where we observe an assumption in line 2,
but without exposing sensitive data. Note that the assumption has been made
over a non-sensitive predicate, as this version of the program does not contain
the predicate energy_efficiency_certificate.

5.2 Use case in First Order Logic

The criteria established in Section 4.3.2 will be used to calculate the energy
distribution, using a model whose design and implementation will be defined
below.

1 low_consumption :-
2 proved(energy_efficiency_certificate).

(a) Original program.

1 low_consumption.

(b) With flag --short.

1 low_consumption :-
2 proved(cooperative_test_passed).

(c) After applying fCASP .
Figure 5.5: Justifications of answer 1 for ?-low_consumption and Lucy.

38

5.2. Use case in First Order Logic

5.2.1 Modeling fair energy assignment

For the sake of simplicity, in the practical example of this work, we model a fair
energy assignment decision maker, which will reward farmers according to how
fair the income of their employed workers is (we have chosen this criterion as
it is another objective defined in the European Common Agricultural Policy).
Moreover, this value is key to supporting the socio-economic sustainability of the
agricultural sector, as workers in this field have reported remarkably low incomes
compared to other jobs. Building a support network and ensuring a competitive
income is crucial for the maintenance of the farm and, as a consequence, the
improvement of the quality of life of its workers and the food sustainability of
society. However, this use case could be expanded to contemplate other values
or objectives in a similar way.

We assume that in this cooperative, each member (on the recommendation of
the association) uses a rule-based model to manage their business. In order
to calculate the coefficients for the distribution of energy, in this example, the
cooperative asks for information on the salary and productivity of their workers.
For this purpose, each farmer will create a submodule and, in order to preserve the
confidentiality of their data, they will apply forgetting to the generated submodule
before sending it to the cooperative for its use on the XAI system that calculates
the energy percentages. From this point on, we will refer to these submodules as
modules.

MEMBER x
XAI System

Complete model

Sub-model
after forgetting

Other app

Figure 5.6: Diagram of farmer’s modules.

Three members/farmers were admitted into the energy generation plan: Adam,
Lucy, and Alex, having each of them has some workers: (i) Adam has two workers,
Eric and Mary; (ii) Lucy has three, Julie, Jean, and Jane; and (iii) Alex has two,
Boris and Bea. The information regarding each farmer and its workers is mod-
eled in separate modules: module_adam.pl, module_lucy.pl, module_alex.pl,
respectively. Fig. 5.7 shows the modules and predicates defined.

Each module calculates the salary and productivity of each worker, depending
on different parameters considered by each cooperative member. The fair income
points are assigned to each member in the master module based on the mean of
the relation between salary and productivity of his/her workers. Note that to
calculate the salary each farmer considers different parameters:

39

https://github.com/Lu-all/energy-distribution-with-scasp-and-fcasp/blob/main/energy%20distribution/module_adam.pl
https://github.com/Lu-all/energy-distribution-with-scasp-and-fcasp/blob/main/energy%20distribution/module_lucy.pl
https://github.com/Lu-all/energy-distribution-with-scasp-and-fcasp/blob/main/energy%20distribution/module_alex.pl

5.2. Use case in First Order Logic

master

salary/2,
base_salary/2,

distance_home_work/2,
has_children/2,
productivity/2,
punctuality/2,

benefits/2

Adam

salary/2,
base_salary/2,

studies/2,
productivity/2,
punctuality/2,

overtime_hours/2,
benefits/2

Lucy

salary/2,
base_salary/2,

holiday_worked/2,
generational_renewal/2,

over_40_boris,
neg_over_40_boris,

over_40_bea,
neg_over_40_bea,

productivity/2,
rest/2,

benefits/2

Alex

(a) Original modules

master

salary/2,
productivity/2

Adam

salary/2,
productivity/2

Lucy

salary/2,
productivity/2

Alex

(b) Forgotten modules
Figure 5.7: Diagram of predicates on each module.

• Adam adds to the base salary base_salary/2 the following concepts:
distance_home_work/2: to assist with transportation expenses, Adam of-

fers additional compensation based on the distance an employee resides
from the workplace.

has_children/2: to assist with family costs, extra pay is given to those
workers with families.

• Lucy obtains the final salary adding to the base salary:
studies/2: this additional amount depends on the employee’s educational

level
punctuality/2 and overtime_hours/2: to gauge the level of productivity

of her workers, she adds to the benefits obtained per employee bonus
points based on punctuality and overtime hours logged.

• Finally, Alex calculates the salary of his/her employees adding to the base
salary the following extras:
holiday_worked/2: a fixed amount of points is assigned based on the num-

ber of holidays worked in the last year, encouraging workers by pro-
viding a bonus for extra work.

generational_renewal/2: to encourage the inclusion of young workers in
the sector, Alex has decided to provide extra points to employees under
40 years old. However, as it is not always possible to obtain the year of
birth of an employee, for the missing values, such as Bea’s birthdate,
an even loop has been created.:
1 generational_renewal(bea, 0):- over_40_bea.
2 generational_renewal(bea, 100):- not over_40_bea.
3

4 over_40_bea:- not neg_over_40_bea.
5 neg_over_40_bea :- not over_40_bea.

40

5.2. Use case in First Order Logic

Then, we implement a master module, called master.pl, which represents the
cooperative administrator, and computes the energy distribution based on the
data contained/computed in the previous modules.

To assign the available energy to each member, the master module calculates
the corresponding percentage based on the fair income points that each member
obtains depending on the salary and the productivity of their workers. Fair
income points are determined by calculating the difference between an employee’s
productivity, measured in euros, and their salary. As we already mentioned, the
salary is calculated by adding their base salary to any additional payments defined
by the employer. To assess the fairness of employees’ incomes for a given farmer,
each worker is associated with a fair_income_x predicate (where x is the farmer
ID). To obtain the resulting assignment invoke

scasp --tree -r=2 -n1 master.pl module_adam.pl module_lucy.pl module_alex.pl

where the flag --tree generates the justification (available at justifica-
tion_percentage_original.txt), -r=2 restrict the number of decimals to 2, and
-n1 returns only the first answer. Additionally, by adding the flag --html, it
is possible to obtain the justification as an HTML navigated file (available at
justification_percentage_original.html).

However, these explanations contain business secrets, i.e., the criteria of how the
farmers compute extra salary. While it is possible to manipulate the justifica-
tions generated by s(CASP) (see (Arias et al. 2020) for details) in this case it
is necessary to modify the private module of each farmer because none of them
want others to know how the salary values are calculated. Fig. 5.7 shows the
minimal predicates that each farmer should share with the master, i.e., salary/2
and productivity/2. Therefore, after forgetting the rest of the predicates the
resulting modules are: module_adam_forgotten.pl, module_lucy_forgotten.pl,
and module_alex_forgotten.pl, respectively.

Currently, the operator is limited to execution within propositional programs, so,
in the model proposed, the operator cannot be applied due to the difference in
the treatment of predicates in comparison with propositional rules.

The dual rules of s(CASP) allow us to derive the negation of predicates while
preserving the implications of the variables involved. This process involves cre-
ating a set of rules for each clause in the original rule. However, challenges arise
when variables in the body of a clause are not present in the head, requiring the
use of the forall predicate. These predicates are not part of the standard ASP
semantics but are specific to the s(CASP) metainterpreter. Based on these dual
rules, extending the algorithm to support its application with generic ASP pred-
icates is possible, and it has been identified as a relevant future line of work. The
use case modules have been forgotten following the desired result of the future
implementation while making a grounding optimization to report a clearer and
simpler result.

41

https://github.com/Lu-all/energy-distribution-with-scasp-and-fcasp/blob/main/energy%20distribution/master.pl
https://github.com/Lu-all/energy-distribution-with-scasp-and-fcasp/blob/main/energy%20distribution/justifications/justification_percentage_original.txt
https://github.com/Lu-all/energy-distribution-with-scasp-and-fcasp/blob/main/energy%20distribution/justifications/justification_percentage_original.txt
https://github.com/Lu-all/energy-distribution-with-scasp-and-fcasp/blob/main/energy%20distribution/justifications/justification_percentage_original.html
https://github.com/Lu-all/energy-distribution-with-scasp-and-fcasp/blob/main/energy%20distribution/module_adam_forgotten.pl
https://github.com/Lu-all/energy-distribution-with-scasp-and-fcasp/blob/main/energy%20distribution/module_lucy_forgotten.pl
https://github.com/Lu-all/energy-distribution-with-scasp-and-fcasp/blob/main/energy%20distribution/module_alex_forgotten.pl

5.2. Use case in First Order Logic

1 salary(eric, Salary):-
2 base_salary(eric, S0),
3 distance_home_work(eric, S1),
4 has_children(eric, S2),
5 Salary is S0 + S1 + S2.

(a) Eric0 = Original program

1 salary(eric, Salary):-
2 S0 = 1200,
3 S1 = 100,
4 S2 = 100,
5 Salary is S0 + S1 + S2.

(b) fCASP (Eric0,setAdam)
1 salary(eric,1400) :-
2 base_salary(eric,1200),
3 distance_home_work(eric,100),
4 has_children(eric,100),
5 1400 is 1200+100+100.

(c) Justification of original program.

1 salary(eric,1400) :-
2 1400 is 1200+100+100.

(d) Justification after forgetting.
Figure 5.8: Eric’s salary programs and justifications (original vs. forgetting).

5.2.2 Evaluation of the First Order Logic use case

In this section, we present the results of applying forgetting to the owner mod-
ules. However, a naive application of fCASP for predicate ASP programs can lead
to an exponential number of irrelevant clauses. To address this, we introduce a
theoretical optimization of generated programs. It is worth noting that these
optimizations are already integrated into most grounders used by bottom-up im-
plementations of ASP, such as the magic set technique (Alviano et al. 2012) for
large datasets and external sources (Calimeri, Cozza, and Ianni 2007) for inter-
preted function symbols.

The examples were executed using s(CASP) ver.0.24.05.29 (available at https:
//gitlab.software.imdea.org/ciao-lang/sCASP). As mentioned earlier, all the
files used in the evaluation can be accessed at https://github.com/Lu-all/
energy-distribution-with-scasp-and-fcasp.

Adam’s module: forgetting Eric’s salary

First, Fig. 5.8a shows the predicate for Eric’s salary in the module associated
with Adam, and Fig. 5.8b shows the result of forgetting setAdam w.r.t. the
predicate salary/2, where, as we mentioned in Section 5.2.1, the set of pred-
icates involved in the calculation of Eric’s salary, setAdam = {base_salary/2,
distance_from_home/2, has_children/2}, are omitted to protect confidential
information. Then, Fig. 5.8c shows the justification obtained for the query
?-salary(eric,Salary), and Fig. 5.8d shows the justification obtained after for-
getting the predicates in seteric. The latter justification is obtained by invoking:

scasp --tree -r=2 -n1 master.pl module_adam_forgotten.pl

42

https://gitlab.software.imdea.org/ciao-lang/sCASP
https://gitlab.software.imdea.org/ciao-lang/sCASP
https://github.com/Lu-all/energy-distribution-with-scasp-and-fcasp
https://github.com/Lu-all/energy-distribution-with-scasp-and-fcasp

5.2. Use case in First Order Logic

module_lucy_forgotten.pl module_alex_forgotten.pl

which can be seen as a subset of the justification for
the query ?-percentages(Percentages) available at justifica-
tion_percentage_forgotten.txt (the HTML navigated version is available
at justification_percentage_forgotten.html).

Alex’s module: forgetting Bea’s salary

Let’s consider Bea’s predicate for salary, in Alex’s module. First, Fig. 5.9a shows
the predicate to calculate Bea’s salary. Note that, as we mentioned before, the
uncertainty in the age of Bea is modeled by using an even loop. As a consequence,
for the query ?-salary(bea,Salary) we would obtain two models:

(i) {salary(bea,1000),base_salary(bea,900),generational_renewal(bea,100),
not over_40_bea,neg_over_40_bea,holiday_worked(bea,0)}.

(ii) {salary(bea,900),base_salary(bea,900),generational_renewal(bea,0),
over_40_bea,not neg_over_40_bea,holiday_worked(bea,0)}.

Second, Fig. 5.9b shows the result of forgetting the private predicates in Alex’s
module setAlex = { base_salary/2, generational_renewal/2, holiday_worked/2,
over_40_bea/2, neg_over_40_bea/2 }.

Note that now auxiliary predicates are required in order to forget those predicates
due to the presence of the even loop (see (Fidilio-Allende and Arias 2024) for
details). The models obtained from the new program are:

(i) {salary(bea,1000),neg_1,not neg_2}

(ii) {salary(bea,900),neg_2,not neg_1}

Note that the auxiliary predicates are necessary to preserve the possibility that
Bea may be either younger or older than 40 years old, allowing different answers
depending on the assumption of the reasoner.

Finally, Fig. 5.9c and 5.9d compare the justification of the original program vs. the
justification of the program result of applying forgetting. In these justifications,
we observe that both models are displayed: in one model it is considered that
over_40_bea is false, i.e., there is no evidence that over_40_bea is true, and in
the second the other way around. Moreover, in Fig. 5.9d, we observe that the
justifications after using fCASP conserve the even loop structure.

43

https://github.com/Lu-all/energy-distribution-with-scasp-and-fcasp/blob/main/energy%20distribution/justifications/justification_percentage_forgotten.txt
https://github.com/Lu-all/energy-distribution-with-scasp-and-fcasp/blob/main/energy%20distribution/justifications/justification_percentage_forgotten.txt
https://github.com/Lu-all/energy-distribution-with-scasp-and-fcasp/blob/main/energy%20distribution/justifications/justification_percentage_forgotten.html

5.2. Use case in First Order Logic

1 over_40_bea:-
2 not neg_over_40_bea.
3 neg_over_40_bea:-
4 not over_40_bea.
5

6 generational_renewal(bea, 0):-
7 over_40_bea.
8 generational_renewal(bea, 100):-
9 not over_40_bea.

10

11 salary(bea, Salary):-
12 base_salary(bea, S0),
13 generational_renewal(bea, S1),
14 holiday_worked(bea, S2),
15 Salary is S0 + S1 + S2.

(a) Bea0 = Original program

1 neg_1 :- not neg_2.
2 neg_2 :- not neg_1.
3

4 salary(bea, Salary):-
5 S0 = 900,
6 neg_2,
7 S1 = 0,
8 S2 = 0,
9 Salary is S0 + S1 + S2.

10

11 salary(bea, Salary):-
12 S0 = 900,
13 neg_1,
14 S1 = 100,
15 S2 = 0,
16 Salary is S0 + S1 + S2.

(b) fCASP (Bea0,setAlex)

1 % Answer 1
2 salary(bea,1000) :-
3 base_salary(bea,900),
4 generational_renewal(bea,100) :-
5 not over_40_bea :-
6 neg_over_40_bea :-
7 chs(not over_40_bea).
8 holiday_worked(bea,0),
9 1000 is 900+100+0.

10

11 % Answer 2
12 salary(bea,900) :-
13 base_salary(bea,900),
14 generational_renewal(bea,0) :-
15 over_40_bea :-
16 not neg_over_40_bea :-
17 chs(over_40_bea).
18 holiday_worked(bea,0),
19 900 is 900+0+0.

(c) Justification of original program.

1 % Answer 1
2 salary(bea,1000) :-
3 neg_1 :-
4 not neg_2 :-
5 chs(neg_1).
6 1000 is 900+100+0.
7

8

9

10

11 % Answer 2
12 salary(bea,900) :-
13 neg_2 :-
14 not neg_1 :-
15 chs(neg_2).
16 900 is 900+0+0.

(d) Justification after forgetting.
Figure 5.9: Bea’s salary programs and justifications (original vs. forgetting).

44

Chapter 6

Conclusions and future work

6.1 Conclusions

We have presented a new forgetting operator, fCASP , designed to work with goal-
directed Answer Set Programs. Thanks to the use of the dual rules compiled by
s(CASP), our proposal fCASP : (i) is able to forget predicates in programs with
even loops (also due to double negations), (ii) can be applied in an iterative and
commutative way, i.e., regardless of the order, and (iii) its application results in
programs that generate the same models as the originals (ignoring the forgotten
and auxiliary predicates) while remove sensitive information from both the model
and its justifications.

Additionally, in this work we have applied fCASP to a real case, based on the
admission of farmers to an energy community, and on the allocation of the gen-
erated energy using values as criteria. Since, automated systems for this use case
are considered high-risk systems by the AI Act, among other obligations, such
systems must provide clear and adequate explanations to users but at the same
time they must comply with other regulations, such as Art. 63 of the Organic Law
1/2004 which states that in procedures related to gender violence, the privacy of
the victims shall be protected.

6.2 Future work

These are preliminary results, and we have identified the following promising
future lines of work for the future.

First, supporting predicates and constraints: Obtaining sound negated rules poses
a challenge to forgetting in programs with predicates (and constraints) because

45

6.2. Future work

of the many complications that arise due to the use of variables. For example,
when variables in the body of the clause do not appear in the head, the s(CASP)
compiler introduces the forall/2 predicate in the dual rules. Which could be
interpreted by s(CASP), because it is part of the meta-interpreter. Similarly, we
claim that fCASP will be able to deal with them.

Second, dealing with recursive predicates: In propositional logic, the number of
times an atom is called in a recursive function does not affect the result. In
contrast, for programs that include recursion such as graph traversal (i.e., the
well-known predicate traversal/2) it would be necessary to either ground the
variables involved or follow a strategy similar to unfolding.

Third, determining and proving formally which properties of the forgetting op-
erators fCASP can satisfy. In particular, as can be seen from the examples, we
believe that it could satisfy strong persistence (SP), the more relevant property
since it preserves the semantics of the original program.

Finally, splitting CASP programs based on its predicate stratification: In general,
a logic program can contain independent business rules, e.g., in the case of energy
distribution, we may generate the requested submodule of the farmer’s program
automatically. In this case, to generate the strictly necessary model, we could
apply splitting. However, in the case of ASP programs, it is necessary to also
check the global constraint (both user-defined and required by the presence of
odd loops).

46

Bibliography

Alviano, M., Faber, W., Greco, G., and Leone, N. (2012). Magic Sets for Dis-
junctive Datalog Programs. In: Artificial Intelligence 187, pp. 156–192.
doi: 10.1016/j.artint.2012.04.008. url: https://doi.org/10.1016/j.
artint.2012.04.008.

Arias, J., Carro, M., Chen, Z., and Gupta, G. (2020). Justifications for Goal-
Directed Constraint Answer Set Programming. In: Proceedings 36th In-
ternational Conference on Logic Programming (Technical Communications).
Vol. 325. EPTCS. Open Publishing Association, pp. 59–72. doi: 10.4204/
EPTCS.325.12.

Arias, J., Carro, M., Chen, Z., and Gupta, G. (2022a). Modeling and reasoning
in event calculus using goal-directed constraint answer set program-
ming. In: Theory and Practice of Logic Programming 22(1), pp. 51–80. doi:
10.1017/S1471068421000156.

Arias, J., Carro, M., Chen, Z., and Gupta, G. (2022b). Modeling and Rea-
soning in Event Calculus using Goal-Directed Constraint Answer
Set Programming. In: Theory and Practice of Logic Programming 22(1),
pp. 51–80. doi: 10.1017/S1471068421000156.

Arias, J., Carro, M., Salazar, E., Marple, K., and Gupta, G. (2018). Constraint
Answer Set Programming without Grounding. In: Theory and Practice
of Logic Programming 18(3-4), pp. 337–354. doi: 10.1017/S1471068418000285.

Arias, J., Moreno-Rebato, M., Rodriguez-García, J. A., and Ossowski, S. (2023).
Automated legal reasoning with discretion to act using s(LAW). In:
Artificial Intelligence and Law 23, pp. 1–24. doi: 10.1007/s10506-023-09376-
5.

Berthold, M. (2022). On Syntactic Forgetting with Strong Persistence.
In: Proceedings of the International Conference on Principles of Knowledge
Representation and Reasoning. Vol. 19, pp. 43–52.

Berthold, M., Gonçalves, R., Knorr, M., and Leite, J. (2019). Forgetting in An-
swer Set Programming with Anonymous Cycles. In: Progress in Arti-
ficial Intelligence: 19th Conference on Artificial Intelligence EPIA. Springer,
pp. 552–565. doi: 10.1007/978-3-030-30244-3_46.

Brewka, G., Eiter, T., and Truszczyński, M. (2011). Answer Set Programming
at a Glance. In: Communications of the ACM 54(12), pp. 92–103.

47

https://doi.org/10.1016/j.artint.2012.04.008
https://doi.org/10.1016/j.artint.2012.04.008
https://doi.org/10.1016/j.artint.2012.04.008
https://doi.org/10.4204/EPTCS.325.12
https://doi.org/10.4204/EPTCS.325.12
https://doi.org/10.1017/S1471068421000156
https://doi.org/10.1017/S1471068421000156
https://doi.org/10.1017/S1471068418000285
https://doi.org/10.1007/s10506-023-09376-5
https://doi.org/10.1007/s10506-023-09376-5
https://doi.org/10.1007/978-3-030-30244-3_46

Bibliography

Calimeri, F., Cozza, S., and Ianni, G. (2007). External Sources of Knowledge
and Value Invention in Logic Programming. In: Annals of Mathematics
and Artificial Intelligence 50(3-4), pp. 333–361. doi: 10.1007/s10472-007-
9076-z. url: https://doi.org/10.1007/s10472-007-9076-z.

Calimeri, F., Ianni, G., Pacenza, F., Perri, S., and Zangari, J. (2024). Forget
and Regeneration Techniques for Optimizing ASP-Based Stream
Reasoning. In: International Symposium on Practical Aspects of Declarative
Languages. Springer, pp. 1–17.

Clark, K. L. (1978). Negation as Failure. In: Logic and Data Bases. Ed. by
H. Gallaire and J. Minker. Springer, pp. 293–322. doi: 10.1007/978-1-4684-
3384-5_11.

DARPA (2017). Explainable Artificial Intelligence (XAI). Defense Ad-
vanced Research Projects Agency. https : / / www . darpa . mil / program /
explainable-artificial-intelligence.

Eiter, T. and Kern-Isberner, G. (2019). A Brief Survey on Forgetting from
a Knowledge Representation and Reasoning Perspective. In: KI-
Künstliche Intelligenz 33, pp. 9–33.

Fidilio-Allende, L. and Arias, J. (2024). fCASP : A forgetting technique for
XAI based on goal-directed constraint ASP models. In: XXIII Jor-
nadas sobre Programación y Lenguajes (PROLE). url: http://platon.etsii.
urjc.es/~jarias/papers/forgotten-paams24/fidilio-forgetting-prole-
24.pdf.

Gelder, A. V., Ross, K., and Schlipf, J. (1991). The Well-Founded Semantics
for General Logic Programs. In: Journal of the ACM 38, pp. 620–650.
doi: 10.1145/116825.116838.

Gelfond, M. and Lifschitz, V. (1988). The Stable Model Semantics for
Logic Programming. In: 5th International Conference on Logic Program-
ming, pp. 1070–1080. doi: 10.2307/2275201.

Goldreich, O. and Oren, Y. (1994). Definitions and properties of zero-
knowledge proof systems. In: Journal of Cryptology 7(1), pp. 1–32.

Gonçalves, R., Janhunen, T., Knorr, M., and Leite, J. (2021). On Syntactic For-
getting under Uniform Equivalence. In: European Conference on Logics
in Artificial Intelligence. Springer, pp. 297–312.

Gonçalves, R., Knorr, M., and Leite, J. (2016). You can’t always forget what
you want: on the limits of forgetting in Answer Set Programming.
In: Proceedings of the Twenty-second European Conference on Artificial Intel-
ligence, pp. 957–965.

Gonçalves, R., Knorr, M., and Leite, J. (2023). Forgetting in Answer Set
Programming–A Survey. In: Theory and Practice of Logic Programming
23(1), pp. 111–156.

Gonçalves, R., Knorr, M., Leite, J., and Woltran, S. (2017). When you must
forget: Beyond Strong Persistence when Forgetting in Answer Set
Programming. In: Theory and Practice of Logic Programming 17(5-6),
pp. 837–854.

48

https://doi.org/10.1007/s10472-007-9076-z
https://doi.org/10.1007/s10472-007-9076-z
https://doi.org/10.1007/s10472-007-9076-z
https://doi.org/10.1007/978-1-4684-3384-5_11
https://doi.org/10.1007/978-1-4684-3384-5_11
https://www.darpa.mil/program/explainable-artificial-intelligence
https://www.darpa.mil/program/explainable-artificial-intelligence
http://platon.etsii.urjc.es/~jarias/papers/forgotten-paams24/fidilio-forgetting-prole-24.pdf
http://platon.etsii.urjc.es/~jarias/papers/forgotten-paams24/fidilio-forgetting-prole-24.pdf
http://platon.etsii.urjc.es/~jarias/papers/forgotten-paams24/fidilio-forgetting-prole-24.pdf
https://doi.org/10.1145/116825.116838
https://doi.org/10.2307/2275201

Bibliography

Gupta, G. (2022). Automating Common Sense Reasoning with ASP and
s(CASP). Technical Report, https://utdallas.edu/~gupta/csr-scasp.pdf.

Hernandez-Matheus, A., Löschenbrand, M., Berg, K., Fuchs, I., Aragüés-Peñalba,
M., Bullich-Massagué, E., and Sumper, A. (2022). A systematic review of
machine learning techniques related to local energy communities.
In: Renewable and Sustainable Energy Reviews 170, p. 112651.

Jain, P., Raina, G., Sinha, S., Malik, P., and Mathur, S. (2021). Agrovoltaics:
Step towards sustainable energy-food combination. In: Bioresource
Technology Reports 15, p. 100766.

Knorr, M. and Alferes, J. J. (2014). Preserving Strong Equivalence while
Forgetting. In: Logics in Artificial Intelligence: 14th European Conference,
JELIA 2014. Springer, pp. 412–425. doi: 10.1007/978-3-319-11558-0_29.

Kustepeli, Y., Gulcan, Y., Yercan, M., and Yıldırım, B. (2023). The role of
agricultural development cooperatives in establishing social capital.
In: The Annals of Regional Science 70(3), pp. 681–704.

Lifschitz, V., Tang, L. R., and Turner, H. (1999). Nested expressions in logic
programs. In: Annals of Mathematics and Artificial Intelligence 25, pp. 369–
389. doi: 10.1023/A:1018978005636.

Lin, B., Wang, X., Jin, S., Yang, W., and Li, H. (2022). Impacts of cooperative
membership on rice productivity: Evidence from China. In: World
Development 150, p. 105669.

Montes, N., Osman, N., Sierra, C., and Slavkovik, M. (2023). Value Engineering
for Autonomous Agents. In: CoRR abs/2302.08759. doi: 10.48550/arXiv.
2302.08759.

Osman, A. I., Chen, L., Yang, M., Msigwa, G., Farghali, M., Fawzy, S., Rooney,
D. W., and Yap, P.-S. (2023). Cost, environmental impact, and re-
silience of renewable energy under a changing climate: a review.
In: Environmental Chemistry Letters 21(2), pp. 741–764.

Roberts, M. B., Sharma, A., and MacGill, I. (2022). Efficient, effective and fair
allocation of costs and benefits in residential energy communities
deploying shared photovoltaics. In: Applied Energy 305, p. 117935.

Swift, T. and Warren, D. S. (2012). XSB: Extending Prolog with Tabled
Logic Programming. In: Theory and Practice of Logic Programming 12(1-
2), pp. 157–187. doi: 10.1017/S1471068411000500.

Woltran, S. (2004). Characterizations for Relativized Notions of Equiva-
lence in Answer Set Programming. In: European Workshop on Logics in
Artificial Intelligence. Springer, pp. 161–173.

Wong, K.-S. (2009). Forgetting in logic programs. PhD thesis. UNSW Sydney.

49

https://utdallas.edu/~gupta/csr-scasp.pdf
https://doi.org/10.1007/978-3-319-11558-0_29
https://doi.org/10.1023/A:1018978005636
https://doi.org/10.48550/arXiv.2302.08759
https://doi.org/10.48550/arXiv.2302.08759
https://doi.org/10.1017/S1471068411000500

	Abstract
	Acknowledgments
	Resumen
	Contents
	List of Tables
	List of Figures
	Introduction
	Objectives
	Implementation of a suitable forgetting technique
	Modeling value-aware decision systems for locally generated energy management

	Thesis contributions and impact
	Thesis Organization

	Background and related work
	Answer Set Programming
	s(CASP): Goal-directed ASP reasoner
	Dual rules compilation
	Explainability: Justification Trees

	State-of-the-art Forgetting Techniques

	fCASP, a Forgetting Technique based on Goal-directed ASP
	A simple and iterative Design
	Step 1: Add auxiliary predicates due to even loops, facts, and/or missing predicate
	Step 2: Generate the simplified dual rule(s) using s(CASP)
	Step 3: Forget the predicate and its negation
	Step 4: Clean true/false and add double negations to preserve even loops
	(Optional) Step 5: Transform double negations into even loops.

	Implementation as s(CASP) extension
	Preliminary validation through examples
	Forgetting predicates in even loops
	Forgetting predicates present in double negations
	Forgetting multiple predicates regardless of the order
	Comparing the required auxiliary predicates

	(Legal and Ethical) Motivation
	Right to Explanation vs. Right to Privacy
	Requirements for the admission of a farmer
	Energy Assignment in Cooperatives
	Ethical Values in Energy Management
	Energy Distribution considering Fairness

	Transparent and fair energy assignment using fCASP
	Use case in Propositional Logic
	Modeling a fair candidate selection system
	Evaluation of the propositional use case

	Use case in First Order Logic
	Modeling fair energy assignment
	Evaluation of the First Order Logic use case

	Conclusions and future work
	Conclusions
	Future work

	Bibliography

