
Value Awareness Engineering

Forgetting what we want to forget

Luciana Fidilio Allende

Subproject 3: Value-aware Systems

Introduction

• AI systems, even if they are value-aware, can only be

trustworthy if they are capable of explaining the reasons for

their decisions.

• s(LAW) [3], based on s(CASP) [2] under the ASP semantics

[5], provides justifications (in NL) [1] and its models can be

audited.

• However, the justifications (and the ASP models themself) may

expose sensitive information (violating privacy and/or legacy)

Introduction

Solutions:

Manipulate the
justifications

Forgetting[4; 6]

Limitations:

Even loops

Applied after
grounding

Not iterable

Our proposal:

a forgetting

framework based on

s(CASP) dual rules

It can
be
used
to:

Hide data on victims of
gender violence
in allocation of school places.

Remove predicates in learned
Inductive Logic Programs.

Avoid reputational damage due to
security incident reports.

Background: s(CASP)

• Top-down execution of Constraint Answer Set Programming.

• Support of even loops due to non-stratified negation. E.g.:

1. p :- not q.
2. q :- not p.

% Generates two models
{p, not q} {q, not p}

• Compile dual rules and denials:

• Dual rules: the negation of the rules in the original program

• Denials: specify that certain literals cannot hold simultaneously.

• User-defined: E.g., a man cannot stand and sit at same time.

:- stand(Man, Time), sit(Man, Time).

• Odd loops: E.g., to avoid inconsistency due to rules of the form

p:- q, not p, the compiler adds the denial :- q, not p.

 ...discarding models where q and not p are true simultaneously.

Background: Forgetting in ASP

• It is a technique that deletes one or more clauses from a program

without affecting its semantic.

• Proposals:

• From Lisbon FSU : [Gonçalves et al. 2021]

• Simple, iterable, satisfies uniform persistence.

• Disadvantages: Loss of information, it only works over stratified programs (it does not support even loops).

• From Leipzig+Lisbon: F*SP : [Berthold et al. 2019]

• Iterable.

• Disadvantages: Satisfies strong persistence only if the original program has certain properties.

Our proposal: Based on FSU

• Uses compiler of s(CASP) to generate dual rules.

• Supports even loops, denials and odd loops.

• Simple, iterable and commutable

Our proposal: Forgetting based on s(CASP) dual rules

• The forgetting implementation is divided in 4 major steps:

1. Transform the clauses of the predicate to forget

2. Generate s(CASP) dual rules of the predicate to forget

3. Forget a predicate (and its negation) and restore even loops.

4. (Optional) Transform double negations into even loops

a. Double negations b. Facts and missing predicates

1. % Generates two models {q} {}

2. q :- not not q.

1. q :- not neg_a.

2. neg_a :- not q.

1. p. % p :- true.

2. q :- t. % t :- false.

1. % Clauses of q/0
2. q :- r, not t.
3. q :- not neg_a.

1. % s(CASP) dual rules
2. not q :- not q_1, not q_2.
3. not q_1 :- not r.
4. not q_1 :- t.
5. not q_2 :- neg_a.

1. % Simplified dual program
2. not q :- not r, neg_a.
3. not q :- t, neg_a.

Our proposal: Forgetting based on s(CASP) dual rules

The following program:

1. p :- not q.
2. q :- r, not t.
3. q :- not not q.
4. r :- not s.
5. s :- p.

… has two models {p, s}
and {q, r},

Our proposal: Forgetting based on s(CASP) dual rules

The following program: and after forgetting p and q, the program:

1. p :- not q.
2. q :- r, not t.
3. q :- not not q.
4. r :- not s.
5. s :- p.

1. neg_a :- not r, not not neg_a.
2. neg_a :- t, not not neg_a.
3. r :- not s.
4. s :- not not neg_a.

… has two models {p, s}
and {q, r},

… has the models {s} and {r}
(without p and q).

Our proposal: Forgetting based on s(CASP) dual rules

Step 1: Transform the clauses of the predicate to forget (p)

Original program: Program after step 1:

1. p :- not q.
2. q :- r, not t.
3. q :- not not q.
4. r :- not s.
5. s :- p.

1. p :- not q.
2. q :- r, not t.
3. q :- not not q.
4. r :- not s.
5. s :- p.

In this case, no change is needed.

Our proposal: Forgetting based on s(CASP) dual rules

Step 2: Generate s(CASP) dual rules for predicate p.

Program after step 1: Program after step 2:

1. p :- not q.
2. q :- r, not t.
3. q :- not not q.
4. r :- not s.
5. s :- p.

1. p :- not q.
2. q :- r, not t.
3. q :- not not q.
4. r :- not s.
5. s :- p.
6. not p :- q. % HERE

We generate the dual rule for p.

Our proposal: Forgetting based on s(CASP) dual rules

Step 3: Forget the “sensitive” predicates (and their negation)

and restore even loops.

Program after step 2: Program after step 3:

1. p :- not q.
2. q :- r, not t.
3. q :- not not q.
4. r :- not s.
5. s :- p. % HERE
6. not p :- q.

1. p :- not q.
2. q :- r, not t.
3. q :- not not q.
4. r :- not s.
5. s :- not q. % HERE
6. not p :- q.

1.
2. q :- r, not t.
3. q :- not not q.
4. r :- not s.
5. s :- not q.
6.

Our proposal: Forgetting based on s(CASP) dual rules

Step 1: Transform the clauses of the predicate to forget (q)

Program after forgetting p: Program after step 1:

1. q :- r, not t.
2. q :- not not q. % HERE
3. r :- not s.
4. s :- not q. % HERE

1. q :- r, not t.
2. q :- not neg_a % HERE
3. neg_a :- not q. % HERE
3. r :- not s.
4. s :- neg_a. % HERE

The term ‘not not’ in ASP is equivalent to the even loops in s(CASP).

Our proposal: Forgetting based on s(CASP) dual rules

Step 2: Generate s(CASP) dual rules for predicate q.

Program after step 1: Program after generating duals:

1. q :- r, not t.
2. q :- not neg_a
3. neg_a :- not q.
3. r :- not s.
4. s :- neg_a.

1. q :- r, not t.
2. q :- not neg_a
3. neg_a :- not q.
3. r :- not s.
4. s :- neg_a.
5. not q :- not q_1, not q_2. % HERE
6. not q_1 :- not r, neg_a. % HERE
7. not q_2 :- t, neg_a. % HERE

Our proposal: Forgetting based on s(CASP) dual rules

Step 2: Generate s(CASP) dual rules for predicate q.

Program after generating duals: Program after step 2:

1. q :- r, not t.
2. q :- not neg_a
3. neg_a :- not q.
3. r :- not s.
4. s :- neg_a.
5. not q :- not q_1, not q_2. % HERE
6. not q_1 :- not r, neg_a. % HERE
7. not q_2 :- t, neg_a. % HERE

1. q :- r, not t.
2. q :- not neg_a
3. neg_a :- not q.
3. r :- not s.
4. s :- neg_a.
5.
6. not q :- not r, neg_a. % HERE
7. not q :- t, neg_a. % HERE

Our proposal: Forgetting based on s(CASP) dual rules

Step 3: Forget the “sensitive” predicates (and their negation)

and restore even loops.

Program after step 2: Program after the transformation:

1. q :- r, not t.
2. q :- not neg_a
3. neg_a :- not q.
3. r :- not s.
4. s :- neg_a.
5. not q :- not r, neg_a.
6. not q :- t, neg_a.

1. q :- r, not t.
2. q :- not neg_a
3. neg_a :- not r, neg_a. % HERE
4. neg_a :- t, neg_a. % HERE
3. r :- not s.
4. s :- neg_a.
5. not q :- not r, neg_a.
6. not q :- t, neg_a.

1.
2.
3. neg_a :- not r, neg_a.
4. neg_a :- t, neg_a.
3. r :- not s.
4. s :- neg_a.
5.
6.

Our proposal: Forgetting based on s(CASP) dual rules

Step 3: Forget the “sensitive” predicates (and their negation)

and restore even loops.

Program after the last

transformation:

Program after step 3:

1. neg_a :- not r, neg_a.
2. neg_a :- t, neg_a.
3. r :- not s.
4. s :- neg_a.

1. neg_a :- not r, not not neg_a. % HERE
2. neg_a :- t, not not neg_a. % HERE
3. r :- not s.
4. s :- not not neg_a. % HERE

Our proposal: Forgetting based on s(CASP) dual rules

Step 4: Transform double negations into even loops

Program after step 3: Program after forgetting p and q, step 4.

1. neg_a :- not r, not not neg_a.
2. neg_a :- t, not not neg_a.
3. r :- not s.
4. s :- not not neg_a.

1. neg_a :- not r, not neg_b. % HERE
2. neg_b :- not neg_a.
3. neg_a :- t, not neg_b. % HERE
4. r :- not s.
5. s :- not neg_b. % HERE

This transformation allows us to execute

the resulting program under s(CASP)

Evaluation I: Justification

Justifications for query ? - s.

Program after step 1
Model: {s, p}

Forgetting p and q
Model: {s}

s :-
p :-
not q :-
not r :-
chs(s).

neg_a :-
chs(not q).

s :-
not neg_b :-

neg_a :-
not r :-

chs(s).
chs(not neg_b).

Evaluation I: Justification

Justifications for query ? - s.

Program after step 1
Model: {s, p}

Forgetting p and q
Model: {s}

Manipulate using --short
Model: {s}

s :-
p :-
not q :-
not r :-
chs(s).

neg_a :-
chs(not q).

s :-
not neg_b :-

neg_a :-
not r :-

chs(s).
chs(not neg_b).

s :-
not r :-

chs(s).
neg_a.

Evaluation II: Justification

Justifications for query ? - r.

Program after step 1
Model: {r, q}

Forgetting p and q
Model: {r}

r :- % first answer

not s :-
not p :-

q :-
chs(r),
not t.

r :- % second answer

not s :-
not p :-

q :-
not neg_a :-
chs(q).

r :-
not s :-

neg_b :-
not neg_a :-

chs(r),
not t.

Evaluation II: Justification

Justifications for query ? - r.

Program after step 1
Model: {r, q}

Forgetting p and q
Model: {r}

Manipulate using –short
Model: {r}

r :- % first answer

not s :-
not p :-

q :-
chs(r),
not t.

r :- % second answer

not s :-
not p :-

q :-
not neg_a :-
chs(q).

r :-
not s :-

neg_b :-
not neg_a :-

chs(r),
not t.

r :- % first answer

not s :-
chs(r),
not t.

r :- % second answer

not s :-
not neg_a.

Application of Forgetting in ILP: Models

Given a school places allocation database, the algorithm FOLD-R++ learns:

1. obtain_p(yes) :- large_f(yes), not ab3, not ab1.
2. ab1 :- come_non_b(yes), want_b_s(yes), not b1_c(yes).
3. ab2 :- same_education_d(yes), not ab1.
4. ab3 :- not sibling_enroll_c(yes), not ab2.

After forgetting the predicates ab1, ab2 and ab3, we obtain:

1. obtain_p(yes) :- large_f(yes), sibling_enroll_c(yes), not come_non_b(yes).
2. obtain_p(yes) :- large_f(yes), sibling_enroll_c(yes), not want_b_s(yes).
3. obtain_p(yes) :- large_f(yes), sibling_enroll_c(yes), b1_c(yes).
4. obtain_p(yes) :- large_f(yes), same_education_d(yes), not come_non_b(yes).
5. obtain_p(yes) :- large_f(yes), same_education_d(yes), not want_b_s(yes).
6. obtain_p(yes) :- large_f(yes), same_education_d(yes), b1_c(yes).
7. obtain_p(yes) :- large_f(yes), same_education_d(yes), not come_non_b(yes), b1_c(yes).
8. obtain_p(yes) :- large_f(yes), same_education_d(yes), not want_b_s(yes), not come_non_b(yes).
9. obtain_p(yes) :- large_f(yes), same_education_d(yes), b1_c(yes), not want_b_s(yes).

But rules in lines 7 and 8 are subsumed by rule 4,

…and rule in line 9 is subsumed by rule 5.

Application of Forgetting in ILP: Models

Given a school places allocation database, the algorithm FOLD-R++ learns:

1. obtain_p(yes) :- large_f(yes), not ab3, not ab1.
2. ab1 :- come_non_b(yes), want_b_s(yes), not b1_c(yes).
3. ab2 :- same_education_d(yes), not ab1.
4. ab3 :- not sibling_enroll_c(yes), not ab2.

After removing lines 7, 8 and 9:

1. obtain_p(yes) :- large_f(yes), sibling_enroll_c(yes), not come_non_b(yes).
2. obtain_p(yes) :- large_f(yes), sibling_enroll_c(yes), not want_b_s(yes).
3. obtain_p(yes) :- large_f(yes), sibling_enroll_c(yes), b1_c(yes).
4. obtain_p(yes) :- large_f(yes), same_education_d(yes), not come_non_b(yes).
5. obtain_p(yes) :- large_f(yes), same_education_d(yes), not want_b_s(yes).
6. obtain_p(yes) :- large_f(yes), same_education_d(yes), b1_c(yes).
7.
8.
9.

We obtain a program that is easier to understand.

Application of Forgetting in ILP: Justifications

For student with data: large_f(yes), same_education_d(yes), come_non_b(no),
sibling_enroll_c(no), want_b_s(yes) and b1_c(no), we obtain:

Learned program:

obtain_p(yes) :-
large_f(yes),
not ab3 :-

not siblig_enroll_c(yes),
ab2 :-

same_education_d(yes),
not ab1 :-

not come_non_b(yes).
proved(not ab1).

Forgetting ab1, ab2 and ab3.

obtain_p(yes) :-
large_f(yes),
same_education_d(yes),
not come_non_b(yes).

Application of Forgetting in ILP: Justifications

For student with data: large_f(yes), same_education_d(yes), come_non_b(no),
sibling_enroll_c(no), want_b_s(yes) and b1_c(no), we obtain:

Learned program:

obtain_p(yes) :-
large_f(yes),
not ab3 :-

not siblig_enroll_c(yes),
ab2 :-

same_education_d(yes),
not ab1 :-

not come_non_b(yes).
proved(not ab1).

Forgetting ab1, ab2 and ab3.

obtain_p(yes) :-
large_f(yes),
same_education_d(yes),
not come_non_b(yes).

Manipulate using –short

obtain_p(yes) :-
large_f(yes),
not siblig_enroll_c(yes),
same_education_d(yes),
not come_non_b(yes).

Conclusions

• We have presented an algorithm of forgetting that:

• Removes predicates of a program without affecting its semantics.

… we tested its correctness with several examples (including those in [4; 6]).

• Generates programs with reduced explanations and…

… more value-aligned w.r.t. confidentiality and privacy of the sensitive data.

Conclusions

• We have presented an algorithm of forgetting that:

• Removes predicates of a program without affecting its semantics.

… we tested its correctness with several examples (including those in [4; 6]).

• Generates programs with reduced explanations and…

… more value-aligned w.r.t. confidentiality and privacy of the sensitive data.

Future Work

• Write a formal proof of the algorithm’s correctness, i.e., demonstrate that the program obtained

after the transformation is equivalent to the original.

• Fully implement the use case for the allocation of school places

 … preserving the privacy of victims of gender-based violence.

• Apply this framework in other fields:

• Cybersecurity: Obfuscate software models and avoid reputational damage In security

reports.

• Energy Infrastructures: Limit data exposure of critical infrastructures.

• Investigate counter-offensives for the application of forgetting to hide bias in decision-making

algorithms.

Bibliography I

[1] Arias, J. Carro, M. Chen, Z. and Gupta, G. (2020). Justifications for Goal-

Directed Constraint Answer Set Programming. In: Proceedings 36th ICLP (TC). Vol.

325. EPTCS, pp. 59-72. DOI: 20.4204/EPTCS.325.12

[2] Arias, J., Carro, M., Salazar, E., Marple, K., & Gupta, G. (2018). Constraint

answer set programming without grounding. Theory and Practice of Logic

Programming, 18(3-4), 337-354.

[3] Arias, J., Moreno-Rebato, M., Rodriguez-García, J. A., & Ossowski, S.

(2023). Automated legal reasoning with discretion to act using s (LAW). Artificial

Intelligence and Law, 1-24.

[4] Berthold, M., Gonçalves, R., Knorr, M., & Leite, J. (2019). A syntactic

operator for forgetting that satisfies strong persistence. Theory and Practice of

Logic Programming, 19(5-6), 1038-1055.

Bibliography II

[5] Gelfond, M., & Lifschitz, V. (1988, August). The stable model semantics

for logic programming. In ICLP/SLP (Vol. 88, pp. 1070-1080).

[6] Gonçalves, R., Janhunen, T., Knorr, M., & Leite, J. (2021, May). On

syntactic forgetting under uniform equivalence. In European Conference on Logics

in Artificial Intelligence (pp. 297-312). Cham: Springer International Publishing.

[7] Wang, H., & Gupta, G. (2022, May). FOLD-R++: a scalable toolset for

automated inductive learning of default theories from mixed data. In International

Symposium on Functional and Logic Programming (pp. 224-242). Cham: Springer

International Publishing.

	Diapositiva 1: Value Awareness Engineering
	Diapositiva 2: Introduction
	Diapositiva 3: Introduction
	Diapositiva 4
	Diapositiva 5: Background: s(CASP)
	Diapositiva 6: Background: Forgetting in ASP
	Diapositiva 7: Our proposal: Forgetting based on s(CASP) dual rules
	Diapositiva 8: Our proposal: Forgetting based on s(CASP) dual rules
	Diapositiva 9: Our proposal: Forgetting based on s(CASP) dual rules
	Diapositiva 10: Our proposal: Forgetting based on s(CASP) dual rules
	Diapositiva 11: Our proposal: Forgetting based on s(CASP) dual rules
	Diapositiva 12: Our proposal: Forgetting based on s(CASP) dual rules
	Diapositiva 13: Our proposal: Forgetting based on s(CASP) dual rules
	Diapositiva 14: Our proposal: Forgetting based on s(CASP) dual rules
	Diapositiva 15: Our proposal: Forgetting based on s(CASP) dual rules
	Diapositiva 16: Our proposal: Forgetting based on s(CASP) dual rules
	Diapositiva 17: Our proposal: Forgetting based on s(CASP) dual rules
	Diapositiva 18: Our proposal: Forgetting based on s(CASP) dual rules
	Diapositiva 19: Evaluation I: Justification
	Diapositiva 20: Evaluation I: Justification
	Diapositiva 21: Evaluation II: Justification
	Diapositiva 22: Evaluation II: Justification
	Diapositiva 23: Application of Forgetting in ILP: Models
	Diapositiva 24: Application of Forgetting in ILP: Models
	Diapositiva 25: Application of Forgetting in ILP: Justifications
	Diapositiva 26: Application of Forgetting in ILP: Justifications
	Diapositiva 27: Conclusions
	Diapositiva 28: Conclusions
	Diapositiva 29: Bibliography I
	Diapositiva 30: Bibliography II

