CETIMNI/N

= Universidad
Lo __} Rey Juan Carlos

fcasp: A forgetting technique for XAI
based on goal-directed constraint ASP models

Luciana Fidilio-Allende Joaquin Arias

Grupo de Inteligencia Artificial de la URJC
Center for Intelligent Information Technologies (CETINIA)
Méstoles, Madrid

17 Junio 2024 (PROLE’24)

/\ www.urjc.es
L]

[Jelele} [e]e]

Introduction

® Automated Decision Makers, even if they are value-aware, can only be
trustworthy if they are capable of explaining their decisions (XAl).

® Logic-based systems, such as s(CASP) [3], a goal-directed execution of
Answer Set Programming (ASP) [7], can provide justifications.

® But the justifications (and the ASP models themselves) may expose
sensitive information (violating privacy and/or legacy).

1/27

http://www.urjc.es

A [Jelele} [o]e]

Introduction

® Automated Decision Makers, even if they are value-aware, can only be
trustworthy if they are capable of explaining their decisions (XAl).

® Logic-based systems, such as s(CASP) [3], a goal-directed execution of
Answer Set Programming (ASP) [7], can provide justifications.

® But the justifications (and the ASP models themselves) may expose
sensitive information (violating privacy and/or legacy).

® Alternatives: (i) Manipulate the justifications [1], or (ii) apply forgetting,

a syntactic transformation that forgets predicates in ASP programs [10].

www.urjc.es

1/27

http://www.urjc.es

/\ www.urjc.es
L]

[Jelele} [e]e]

Introduction

® Automated Decision Makers, even if they are value-aware, can only be
trustworthy if they are capable of explaining their decisions (XAl).

® Logic-based systems, such as s(CASP) [3], a goal-directed execution of
Answer Set Programming (ASP) [7], can provide justifications.

® But the justifications (and the ASP models themselves) may expose
sensitive information (violating privacy and/or legacy).

® Alternatives: (i) Manipulate the justifications [1], or (ii) apply forgetting,

a syntactic transformation that forgets predicates in ASP programs [10].

Example from [10] Result after forgetting ustaff/1
1 person(X) :- ustaff(X). 1 person(X) :- professor(X).
> ustaff(X) :- professor(X). > professor(mary).

s professor(mary).

{ ..., person(mary) } { ..., person(mary) }

1/27
B

http://www.urjc.es

/\ www.urjc.es
L]

[e] Jele} [e]e]

Introduction

® Automated Decision Makers, even if they are value-aware, can only be
trustworthy if they are capable of explaining their decisions (XAl).
® Logic-based systems, such as s(CASP) [3], a goal-directed execution of
Answer Set Programming (ASP) [7], can provide justifications.
® But the justifications (and the ASP models themselves) may expose
sensitive information (violating privacy and/or legislation).
® Alternatives: (i) Manipulate the justifications [1], or (ii) apply forgetting,
a syntactic transformation that forgets predicates in ASP programs [10].

(i) sensitive information persists in the model.

(ii) existing proposals of forgetting focus on propositional logic.

2/27

http://www.urjc.es

/\ www.urjc.es
L]

[e]e] le} [e]e]

Limitations of state-of-the-art Forgetting techniques

(UP) (SP) Loops Commutative Predicates Constraints

fsu [8] Yes No Yes No No No
fsp [5] Yes Limited No No No No
fép [4] Yes Limited Yes Yes No No
fac [6] Yes Yes Yes Yes No No

® (UP): Uniform Persistence means that the original program and the
forgetting result are equivalence even if we add new facts.

® (SP): Strong Persistence is similar to (UP) but adding new rules.
® Loops: Deal with even/odd loops (by adding auxiliary predicates).
® Commutative: Allow iterative application, regardless of the order.

3/27

http://www.urjc.es

/\ www.urjc.es
L]

[e]e]e]] [e]e]

Limitations of state-of-the-art Forgetting techniques (cont.)

(UP) (SP) Loops Commutative Predicates Constraints

fsu [8] Yes No Yes No No No
fsp [5] Yes Limited No No No No
fép [4] Yes Limited Yes Yes No No
fac [6] Yes Yes Yes Yes No No
fcasp Yes Yes Yes Yes WiP WiP

Our proposal fcasp based on fsy

® |t is simple, iterable, and commutable.
® Uses the compiler of s(CASP) to generate dual rules.

® Supports even loops, denials and odd loops.
.. and we believe it would support Predicates and Constraints.

4/21

http://www.urjc.es

A 0000
Background: ASP

® Answer Set Programming (ASP) is based on the stable model
semantics [7], supporting non-stratified negation:

1 p :- not q. 1 p :- not q.
2 q :- not p. 2 q - p.
Even loop: {p}, {q} Odd loop: no models

® |n this work, we extended ASP with double default negations [12]:
The clause p :- not not p. generates two models: {p} and {}.
® Double negations can be modeled as even loops. For example, the
predicate p :- not not p is transformed into:

1 p :- not neg_p.
2 mneg_p :- not p.

www.urjc.es

5/27

http://www.urjc.es

AN\ oo
Background: s(CASP)

® |t is a top-down, goal-directed interpreter of ASP with Constraints [3].
e Can provide justifications (in natural language) [1].

® They can be manipulated (to hide sensitive information) using the
directive #show and the flag --short.

® |t solves negated atoms (not p) against the dual rules of the program
(the negation of the rules present in the program) [2]. E.g.:

1 % Original program
2 p(0).
3 p(X) :- q(X), not t(X,Y).

www.urjc.es

6/27

http://www.urjc.es

/n\ [eleYole}

Background: s(CASP)

1
2

3

www.urjc.es

® |t is a top-down, goal-directed interpreter of ASP with Constraints [3].
e Can provide justifications (in natural language) [1].

® They can be manipulated (to hide sensitive information) using the
directive #show and the flag --short.

® |t solves negated atoms (not p) against the dual rules of the program
(the negation of the rules present in the program) [2]. E.g.:

% Original program

p(0).
p(X)

:- q(X), not t(X,Y).

[- N B N O CE

% Dual rules

not p(X) :- mnot p1l(X), not p2(X).

not pl(X) :- X\=0.

not p2(X) :- forall(Y, mnot p2_(X,Y)).
not p2_(X,Y) :- not q(X).

not p2_(X,Y) :- q(X), t(X,Y).

6/27

http://www.urjc.es

www.urjc.es
A 0000

Background: s(CASP)

® |t is a top-down, goal-directed interpreter of ASP with Constraints [3].
e Can provide justifications (in natural language) [1].

® They can be manipulated (to hide sensitive information) using the
directive #show and the flag --short.

® |t solves negated atoms (not p) against the dual rules of the program
(the negation of the rules present in the program) [2]. E.g.:
1 % Original program
2 p(0).
3 p(X) :- q(X), not t(X,Y).

% Dual rules

not p(X) :- mnot p1l(X), not p2(X).

not pl(X) :- X\=0.

not p2(X) :- forall(Y, mnot p2_(X,Y)).
not p2_(X,Y) :- not q(X).

not p2_(X,Y) :- q(X), t(X,Y).

line 3)
. is translated into forall (line 4).

~~ o 0 & w N o=

NOTE: The existential quantifier for Y

6/27

http://www.urjc.es

CETIMIA 000 coonon www.urjc.es

The forgetting technique fcasp

7/27

http://www.urjc.es

www.urjc.es

A [e] Jele} [e]e]e]e]e]e)

The forgetting technique fcasp: (Updated) Algorithm design

fcasp consists on five steps that can be iteratively repeated to forget multiple
predicates (consider we want to forget the predicate p):

1. Add auxiliary predicates due to even loops, facts and/or missing predicate.
If p is part of an even loop, not p is replaced, and neg_x :- not p is added.
2. Generate the simplified dual rule(s) using s(CASP).

1 % Clauses of p 1 % s(CASP) dual rules 1 % Simplified dual rule(s)
2 p :- t, not u. 2 mnot p :- not p_1, not p_2. 2 not p :- not t, r.
3 p :- not r. 3 not p_1 :- not t. 3 not p :-u, r.

4 mnot p_1 :- u.

5 mnot p_2 :- r.

3. Forget the predicate and its negation.

4. Clean true/false and add double negations to preserve even loops.
Repeat steps 1 to 4 to forget the next predicate...

5. (Optional) Transform double negations into even loops.

8/27
S

http://www.urjc.es

/n\ feleY Yo}

The forgetting technique fcasp: Implementation

f_scasp(Flag, [Pred|Preds], P_O, P_Forgetting) :-
transform_even_loop(Pred, P_0O, P_la, Neg Pred),
transform_fact_missing(Pred, P_la, P_1b),
transform_auto_calls(Pred, P_1b, P_1c),
gen_dual (Pred, P_1lc, Dual_Rule),
forget_pred(Pred, Dual_Rule, P_ic, P_3),
restore_even_loop(Neg_Pred, P_3, P_4a),
restore_facts_missing(P_4a, P_4b),
f_scasp(Flag, Preds, P_4b, P_Forgetting).

f_scasp(0, [], P_Forgetting, P_Forgetting).

f_scasp(1l, [], P_Forgetting, P_Scasp) :-
transform_double_negations(P_Forgetting, P_Scasp).

® fcasp is implemented under s(CASP) available at:

)

www.urjc.es
000000

Step 1

Step 2
Step 3
Step 4

Repeat 1,2,3,4
Skip Step 5

Step 5

https://gitlab.software.imdea.org/ciao-lang/sCASP.

® Can be invoked using the flag --forget="'LIST' [/F].

9/27

http://www.urjc.es
https://gitlab.software.imdea.org/ciao-lang/sCASP

/\ www.urjc.es
L]

[e]e]e]] 000000

The forgetting technique fcasp: Running Example

example.pl scasp example.pl -—forget='p,q'/0
1 p - 1T -
2 not q. 2 not s.
3 . q - 3 s -
4 t, 4 t,
5 not u. 5 not u,
6 q :- 6 not not neg_1.
7 not r. 708 -
g8 I - 8 not r,
9 not s. 9 not not neg_1.
0 S - 10 neg_1 :-
11 q, 11 t,
12 not p. 12 not u.
13 neg_1 :-
14 not r.
{qg,s) {r,p} {neg 1, s} {r}

10/27

http://www.urjc.es

AN

The forgetting technique fcasp: Running Example

example.pl
1 p -
2 not q.
3 . q -
4 t,
5 not u.
6 q :-
7 not r.
8 T -
9 not s.
0 s :-
11 q,
12 not p.

{q,s} {r,p}

scasp example.pl -—forget='p,q'/0

1 T -

2 not s.

3 s -

4 t,

5 not u,

6 not not neg_1.
7 8 -

8 not r,

9 not not neg_1.
10 neg_1 :-

11 t,

12 not u.

13 neg_1 :-

14 not r.

{neg1,s} {r}

000000

www.urjc.es

scasp example.pl ——forget='p,q'/1

r :-
not s.

t,
not u,
not neg_2.
not r,
not neg_2.
neg_1 :-
t,
not u.
neg_1 :-
not r.
neg_2 :-
not neg_1.

http://www.urjc.es

AN

0000

www.urjc.es
00000

Step 1: Add auxiliary predicates due to even loops, facts and/or missing clauses.

Original program

N

n K. .0"T

not q.
t, not u.
not r.
not s.

q, not p.

% HERE

Program after step 1

N

o

.- not q.

:- t, not u.

not r.

;- not s.

:- q, neg_1. 7 HERE
neg_1 :- not p. % HERE

w K. .aY
0

11/27

http://www.urjc.es

www.urjc.es
O®@0000

Step 2: Generate the simplified dual rule(s) using s(CASP).

Program after step 1

Program after step 2

P
n K. .0"T
BWw N =

o

© N o a

p :- not q.

q :- t, not u.
q :- not r.

r :- not s.

s :- q, neg_1.
neg_1 :- not p.
% Dual:

not p :- q.

12/27

http://www.urjc.es

/\ www.urjc.es
L]

0000 [e]e] le]ele]

Step 3: Forget the predicate and its negation.

Program after step 2 Program after step 3
1 p :- not q. 1 % HERE
2 q :- t, not u. 2 q :- t, not u.
3 q :- not r. 3 q :- not r.
4 T :- not s. 4 T :- not s.
5 s :- g, neg_1. 5 s :- g, neg_1.
6 mneg_1 :- not p. ¥ HERE 6 neg_ 1 :- q. % HERE
7 7% Dual:
s not p :- q.

13/27

http://www.urjc.es

www.urjc.es

A 0000 [e]e]e] lele)

Step 4: Clean true/false and add double negations to preserve even loops.

Program after step 3 Program after step 4

1 q :— t, not u. 1 q :— t, not u.

> g :- not r. > g :- not r.

3 r :- not s. 3 r :- not s.

4 s :- q, neg_1. 7, HERE 4 s :- q, not not neg_1. JHERE
s neg_1l :- q. s neg_1l :- q.

14/27

http://www.urjc.es

www.urjc.es

A 0000 [e]e]e]e] o)

Repeat Steps 1-4: forget the predicate q

Program after step 4 (for p) Program after step 4 (for p and q)

1 q :— t, not u. 1 r :- not s.

2 q :- not r. 2 s :- t, not u, not not neg_1.
3 r :- not s. 3 s :- not r, not not neg_1.

4 S :— q, not not neg_1. 4 mneg_1 :- t, not u.

s neg_1l :- q. 5 mneg_1l :- not r.

15/27

http://www.urjc.es

/\ www.urjc.es
L]

0000 [e]e]e]e]e])

Step 5 (Optional): Transform double negations into even loops.

Program after step 4 (for p and q) Program after step 5
1 r :- not s. 1 r :- not s.
> s :- t, not u, not not neg_1.7 HERE > s :- t, not u, not neg_2. 7 HERE
3 s :- not r, not not neg_1. % HERE 3 s :- not r, not neg_ 2. % HERE
4+ mneg_1 :- t, not u. 4 mneg_1 :- t, not u.
5 mneg_1l :- not r. 5 mneg_1l :- not r.
6 neg_2 :- not neg_1. % HERE

® As we mentioned before, this step is optional. By default, it is always
performed F=1, but it can be disabled by setting F=0.

® The resulting program after step 5 can be executed using s(CASP).

16/27

http://www.urjc.es

-r- m www.urjc.es
CE l lA 0000 [e]e]e} [e]e) (e} J

Evaluation

17/27

http://www.urjc.es

AN

Evaluation 1: fcasp supports even loops

P; = Example 3 from [9]

N

a
b
p
q

{p,

- p.
- q.
:— not q.
:— not p.

a} {q, b}

fecasp(P1,{p,q})

1
2
3
4

a :- not not
b :- not not
neg_1 :- not
neg_2 :- not

{a, neg 2} b,

www.urjc.es

neg_2.
neg_1.
not neg_1.
neg_1.

neg_1}

18/27

http://www.urjc.es

AN

[e]e] lele]

www.urjc.es
[e]e]e} [e]e]

Evaluation 2: fcasp handle double negations

P, = Example 4 from [11] fcasp(P2, {p})

1 p :— not not p. 1 q :- not neg_1.

2 q - p. 2 r :- not not neg_1.

3 r :- not p. 3 mneg_1l :- not not neg_1.
{p, qF {r}

{q} {r, neg_1}

19/27
B

http://www.urjc.es

A [e]e]e] Jo) [e]e]e) [e]e) (e}
Evaluation 3: fcasp is commutative (same result regardless of order)

fecasp(P3, {p, q})

1 a :- not neg_1, not not neg_1.
P3 = Example 1 from [4] 2 mneg_1 :- not not neg_1.
1 a:-p, q.
2 q :- not p.
s p :- not mot p. fcase(Ps3, {q, p})
1 a :- not neg_1, not not neg_1.
2 mneg_1 :- not not neg_1.
{pr {gr
{ } {neg_1}

www.urjc.es

20/27

http://www.urjc.es

A ooooe

[e]e]e}

Evaluation 4: Comparing fcasp vs. fac

P4 = Example 5 from [6]

1

2

3

q
a
c

{c}

:— not not q, b.

- q.
:- not q.

fac(Ps,{q})

1
2
3
4

a :- b, dq.

c :- not 4.

c :- not b.

dq :— mot not dq.
{c} {c, g}

fcasp(Pa, {q})

1
2
3
4

a :- not
c :- not
neg_1 :-
neg_1 :-

{c, neg_1}

www.urjc.es

neg_1, b.

not neg_1.

not not neg_1.
not b.

21/27

http://www.urjc.es

A 00000

www.urjc.es

(Real) use case 1: School place allocation submitted to ICLP'24

© o N o oA W N =

-
15}

® In the “Comunidad de Madrid”, school placements are determined by
assigning points based on specific criteria.

® One criterion is being a victim of gender-based violence.
...legally protected data (Art. 63, Organic Law 1/2004).

% Original program

[...]

met_common_requirement :-
large_family.

met_common_requirement :-—
recipient_social_benefits.

met_common_requirement :-
disability_status.

met_common_requirement :-
gender_based_violence_victim.

BN N

% Student 2
gender_based_violence_victim.
sibling_enroll_center.
same_education_district.
come_non_bilingual.
want_bilingual_section.
english_native.

22/27

http://www.urjc.es

www.urjc.es

AN

00000 [Jele} [e]e] o]

(Real) use case 1: School place allocation submitted to ICLP'24

® In the “Comunidad de Madrid”, school placements are determined by
assigning points based on specific criteria.

® One criterion is being a victim of gender-based violence.
...legally protected data (Art. 63, Organic Law 1/2004).

met_common_requirement :- english_native.

disability_status.

1 % Original program 1 % Student 2 1 % Result after forgetting
2 [...] 2 gender_based_violence_victim. 2 % for Student 2

3 met_common_requirement :- 3 sibling_enroll_center. 3 [...]

4 large_family. 4 same_education_district. 4 met_common_requirement :-—
5 met_common_requirement :- 5 come_non_bilingual. 5 large_family.

6 recipient_social_benefits. 6 want_bilingual_section. 6 met_common_requirement.

7 7

8

9

met_common_requirement :-
gender_based_violence_victim.

-
15}

22/27

http://www.urjc.es

www.urjc.es

AN

00000 [e] le} [e]e] o]

(Real) use case: School place allocation (cont.)
® |n other scenarios the clauses involve even loops.

1 % Original program

2 [...]

3 accredit_english_level :- english_certificate.
4 accredit_english_level :- english_native.

5 accredit_english_level :- english_exam_passed.
6

7

8

9

english_certificate :- external_certificate.
english_certificate :- english_exam_passed.

10 english_exam_passed :- onsite_exam_passed.
11 english_exam_passed :- english_native,
12 not last_exam_failed.

14 last_exam_failed :- not english_certificate.

23/27

http://www.urjc.es

AN

00000

www.urjc.es
[e]e] o]

(Real) use case: School place allocation (cont.)

® |n other scenarios the clauses involve even loops.

% Original program
[...]
accredit_english_level
accredit_english_level
accredit_english_level

english_certificate :-
english_certificate :-

english_exam_passed :-—
english_exam_passed :-

:— english_certificate.

:— english native.

1= english_exam_passed.

external _certificate.
english_exam_passed.

onsite_exam_passed.
english_native,
not last_exam_failed.

last_exam_failed :- not english certificate.

© ® N o G A W N e

% Result after forgetting
% for Student 2
accredit_english_level :-
not last_exam_failed.
accredit_english_level.

last_exam_failed :- not neg_2.
neg_2 :- not neg_1.
neg_1 :- last_exam_failed.

23/27

http://www.urjc.es

/\ www.urjc.es
L]

00000 [e]e]] [e]e] o]

(Real) use case: School place allocation (cont.)

® |et's see the justifications for ?- accredit_english_level.

24/27

http://www.urjc.es

/\ www.urjc.es
L]

00000 [e]e]] [e]e] o]

(Real) use case: School place allocation (cont.)

® |et's see the justifications for ?- accredit_english_level.

% Justification Original program
% for Student 2
accredit_english_level :-
english_certificate :-
english_exam_passed :-
english_native,
not last_exam_failed :-
chs(english_certificate).

© N o G A W N e

24/27

http://www.urjc.es

/\ www.urjc.es
L]

00000 [e]e]] [e]e] o]

(Real) use case: School place allocation (cont.)

® |et's see the justifications for ?- accredit_english_level.

% Justification Original program
% for Student 2
accredit_english_level :-
english_certificate :-
english_exam_passed :-
english_native,
not last_exam_failed :-
chs(english_certificate).

© N o G A W N e

24/27

http://www.urjc.es

A 00000

www.urjc.es

(Real) use case: School place allocation (cont.)

© N o G A W N e

® |et's see the justifications for ?- accredit_english_level.

% Justification Original program
% for Student 2
accredit_english_level :-
english_certificate :-
english_exam_passed :-
english_native,
not last_exam_failed :-

chs(english_certificate).

N o @A W N e

% Justification after forgetting
% for Student 2
accredit_english_level :-
not last_exam_failed :-
neg_2 :-
not neg_1 :-
chs(not last_exam_failed).

24/27

http://www.urjc.es

AN

00000

www.urjc.es
[e]e] o]

(Real) use case: School place allocation (cont.)

© N o G A W N e

® |et's see the justifications for ?- accredit_english_level.

% Justification Original program
% for Student 2
accredit_english_level :-

english_certificate :-

english_exam_passed :-
english_native,
not last_exam_failed :-
chs(english_certificate).

% Manipulated justification

% for Student 2

accredit_english_level :-
not last_exam_failed.

N o @A W N e

% Justification after forgetting
% for Student 2
accredit_english_level :-
not last_exam_failed :-
neg_2 :-
not neg_1 :-
chs(not last_exam_failed).

24/27

http://www.urjc.es

www.urjc.es

A 00000 [e]e]e} [Je] o

(Real) use case 2: Energy Assignment accepted in PAAMS'24

® We propose a value-aware automated decision-making systems for
energy assignment in agricultural cooperative:
® Their decisions must be fair.
® To trust a decision, a justification is required (XAl).
® Additionally, the members of the cooperative may want to
preserve business secrets (e.g., salary complements).

Other;;;pmm’i Sub-model
: ! after forgetting

Complete model

MEMBER x

25/27

http://www.urjc.es

/\ www.urjc.es
L]

00000 [e]e]e} e0 o]

(Real) use case 2: Energy Assignment accepted in PAAMS'24

® We propose a value-aware automated decision-making systems for
energy assignment in agricultural cooperative:
® Their decisions must be fair.
® To trust a decision, a justification is required (XAl).
® Additionally, the members of the cooperative may want to
preserve business secrets (e.g., salary complements).

1 % Original clauses 1 % Result after forgetting
2 salary(eric, Salary):- 2 salary(eric, Salary):-

3 base_salary(eric, S0), 3 S0 = 1200,

4 distance_home_work(eric, S1), 4 S1 = 100,

5 has_children(eric, S2), 5 S2 = 100,

6 6

Salary is SO + S1 + S2. Salary is SO + S1 + S2.

25/27

http://www.urjc.es

/\ www.urjc.es
L]

00000 [e]e]e} (o]) o]

(Real) use case 2: Energy Assignment (cont.)

© ©® N o G A w N e

11
12
13
14
15
16

® Again, let's see how it works in the presence of even loops.

% Original clauses
over_40_bea :-

not neg_over_40_bea.
neg_over_40_bea:-

not over_40_bea.

generational_renewal (bea, 0):-
over_40_bea.

generational_renewal (bea, 100):-
not over_40_bea.

salary(bea, Salary):-
base_salary(bea, S0),
generational_renewal(bea, S1),
holiday_worked(bea, S2),
Salary is SO + S1 + S2.

26/27

http://www.urjc.es

/\ www.urjc.es
L]

00000 [e]e]e} (o]) o]

(Real) use case 2: Energy Assignment (cont.)

© ©® N o G A w N e

11
12
13
14
15
16

® Again, let's see how it works in the presence of even loops.

% Original clauses
over_40_bea :-

not neg_over_40_bea.
neg_over_40_bea:-

not over_40_bea.

generational_renewal (bea, 0):-
over_40_bea.

generational _renewal (bea, 100):-
not over_40_bea.

salary(bea, Salary):-
base_salary(bea, S0),
generational_renewal(bea, S1),
holiday_worked(bea, S2),
Salary is SO + S1 + S2.

26/27

http://www.urjc.es

A 00000

www.urjc.es

(Real) use case 2: Energy Assignment (cont.)

© ©® N o G A w N e

11
12
13
14
15
16

® Again, let's see how it works in the presence of even loops.

% Original clauses
over_40_bea :-

not neg_over_40_bea.
neg_over_40_bea:-

not over_40_bea.

generational_renewal (bea, 0):-
over_40_bea.

generational _renewal (bea, 100):-
not over_40_bea.

salary(bea, Salary):-
base_salary(bea, S0),
generational_renewal(bea, S1),
holiday_worked(bea, S2),
Salary is SO + S1 + S2.

% Result after forgetting
neg_1 :- not neg_2.
neg_2 :- not neg_1.

salary(bea, Salary):-

S0 = 900,
neg_2,

S1 =0,
s2 =0,

Salary is SO + S1 + S2.
salary(bea, Salary):-

SO0 = 900,
neg_1,

S1 = 100,
S2 =0,

Salary is SO + S1 + S2.

26/27

http://www.urjc.es

A 00000

Conclusions

® We have presented the design (and implementation) of fcasp, an
iterative and commutative forgetting technique that:

® Supports the presence of even and odd loops

...we tested its correctness with examples from [5; g].

® Could be extended to support predicates and constraints

...thanks to the use of dual rules from s(CASP).

® We have applied fcasp to (real) use cases

...considering value-aligned by preserving confidentiality and privacy.

www.urjc.es

27/27
S

http://www.urjc.es

/\ www.urjc.es
L]

00000 [e]e]e} [e]e] []

Conclusions

® We have presented the design (and implementation) of fcasp, an
iterative and commutative forgetting technique that:

® Supports the presence of even and odd loops
...we tested its correctness with examples from [5; g].
® Could be extended to support predicates and constraints
...thanks to the use of dual rules from s(CASP).

® We have applied fcasp to (real) use cases
...considering value-aligned by preserving confidentiality and privacy.

Future Work

® Provide a formal proof of the fcasp algorithm’s correctness.
® Expand fcasp to support generic CASP programs.

27/27

http://www.urjc.es

/\ www.urjc.es
L]

00000 [e]e]e} [e]e] []

Conclusions

® We have presented the design (and implementation) of fcasp, an
iterative and commutative forgetting technique that:

® Supports the presence of even and odd loops
...we tested its correctness with examples from [5; g].
® Could be extended to support predicates and constraints
...thanks to the use of dual rules from s(CASP).

® We have applied fcasp to (real) use cases
...considering value-aligned by preserving confidentiality and privacy.

Future Work \
® Provide a formal proof of the fcasp algorithm’s correctness. @ *
® Expand fcasp to support generic CASP programs. V

27/27

http://www.urjc.es

/\ www.urjc.es
Bibliography |

[1] Arias, Joaquin, Carro, Manuel, Chen, Zhuo, and Gupta, Gopal (2020). Justifications for
Goal-Directed Constraint Answer Set Programming. In: Proceedings 36th International
Conference on Logic Programming (Technical Communications). Vol. 325. EPTCS. Open
Publishing Association, pp. 59-72. DOI: 10.4204/EPTCS.325.12

[2] — (2022). Modeling and Reasoning in Event Calculus using Goal-Directed
Constraint Answer Set Programming. In: Theory and Practice of Logic Programming
22.1, pp. 51-80. po1: 10.1017/S1471068421000156.

[3] Arias, Joaquin, Carro, Manuel, Salazar, Elmer, Marple, Kyle, and Gupta, Gopal (2018).
Constraint Answer Set Programming without Grounding. In: Theory and Practice of
Logic Programming 18.3-4, pp. 337-354. DOI: 10.1017/S1471068418000285.

[4] Berthold, Matti (2022). On Syntactic Forgetting with Strong Persistence. In:
Proceedings of the International Conference on Principles of Knowledge Representation and
Reasoning. Vol. 19, pp. 43-52.

28/27

http://www.urjc.es
https://doi.org/10.4204/EPTCS.325.12
https://doi.org/10.1017/S1471068421000156
https://doi.org/10.1017/S1471068418000285

www.urjc.es

AN

Bibliography Il

[5]

Berthold, Matti, Gongalves, Ricardo, Knorr, Matthias, and Leite, Joao (2019a). A
Syntactic Operator for Forgetting that satisfies Strong Persistence. In: Theory and
Practice of Logic Programming 19.5-6, pp. 1038-1055.

[6] — (2019b). Forgetting in Answer Set Programming with Anonymous Cycles. In:

[7]

[8]

Progress in Artificial Intelligence: 19th Conference on Artificial Intelligence EPIA. Springer,
pp. 552-565. DOI: 10.1007/978-3-030-30244-3_46.

Gelfond, Michael and Lifschitz, Vladimir (1988). The Stable Model Semantics for Logic
Programming. In: 5th International Conference on Logic Programming, pp. 1070-1080.
DOI: 10.2307/2275201.

Goncalves, Ricardo, Janhunen, Tomi, Knorr, Matthias, and Leite, Jodo (2021). On
Syntactic Forgetting under Uniform Equivalence. In: European Conference on Logics in
Artificial Intelligence. Springer, pp. 297-312.

29/27

http://www.urjc.es
https://doi.org/10.1007/978-3-030-30244-3_46
https://doi.org/10.2307/2275201

/\ www.urjc.es
L]

Bibliography Il

[9]

[10]

[11]

[12]

Gongalves, Ricardo, Knorr, Matthias, and Leite, Joao (2016). You can’t always forget
what you want: on the limits of forgetting in Answer Set Programming. In:
Proceedings of the Twenty-second European Conference on Artificial Intelligence,

pp- 957-965

Gongalves, Ricardo, Knorr, Matthias, and Leite, Jodo (2023). Forgetting in Answer Set
Programming—A Survey. In: Theory and Practice of Logic Programming 23.1,

pp. 111-156

Knorr, Matthias and Alferes, José Jilio (2014). Preserving Strong Equivalence while
Forgetting. In: Logics in Artificial Intelligence: 14th European Conference, JELIA 2014.
Springer, pp. 412-425. DOI: 10.1007/978-3-319-11558-0_29.

Lifschitz, Vladimir, Tang, Lappoon R, and Turner, Hudson (1999). Nested expressions in
logic programs. In: Annals of Mathematics and Artificial Intelligence 25, pp. 369-389.
DOT: 10.1023/A:1018978005636.

30/27

http://www.urjc.es
https://doi.org/10.1007/978-3-319-11558-0_29
https://doi.org/10.1023/A:1018978005636

	
	
	The forgetting technique fCASP
	

	Evaluation
	
	
	

	Appendix
	References

