
fCASP: a Forgetting Operator

and its Application to Energy

Distribution Under a Goal-

Directed ASP Decision Model

Luciana Camila Fidilio Allende

pág.

02

Introduction

• Decision models can automate the allocation of crucial

resources in cooperative/competitive contexts.

• We can use ASP to program decision models.

1. energy_pepe :-
2. sick_pepe.
3. sick_pepe:-
4. past_sick_pepe,
5. not rest_pepe.
6. rest_pepe :-
7. not machine_pepe.
8. machine_pepe :-
9. energy_pepe.
10. past_sick_pepe.

pág.

03

Introduction

• Decision models can automate the allocation of crucial

resources in cooperative/competitive contexts.

• We can use ASP to program decision models.

• Explainability is needed to ensure trustworthiness.

• ASP programs/models can provide justifications.

Model: { energy_pepe, … }

Justification:
energy_pepe :-

sick_pepe :-
past_sick_pepe,
not rest_pepe :-

machine_pepe :-
chs(energy_pepe).

1. energy_pepe :-
2. sick_pepe.
3. sick_pepe:-
4. past_sick_pepe,
5. not rest_pepe.
6. rest_pepe :-
7. not machine_pepe.
8. machine_pepe :-
9. energy_pepe.
10. past_sick_pepe.

pág.

04

Introduction

• Decision models can automate the allocation of crucial

resources in cooperative/competitive contexts.

• We can use ASP to program decision models.

• Explainability is needed to ensure trustworthiness.

• ASP programs/models can provide justifications (in NL).

Pepe gets electric power, because
Pepe is sick, because

Pepe was sick yesterday, and
there is no evidence that Pepe has rested, because

Pepe has used the machine, because
it is assumed that Pepe gets electric power.

1. energy_pepe :-
2. sick_pepe.
3. sick_pepe:-
4. past_sick_pepe,
5. not rest_pepe.
6. rest_pepe :-
7. not machine_pepe.
8. machine_pepe :-
9. energy_pepe.
10. past_sick_pepe.

Model: { energy_pepe, … }

Justification:
energy_pepe :-

sick_pepe :-
past_sick_pepe,
not rest_pepe :-

machine_pepe :-
chs(energy_pepe).

pág.

05

Introduction

Sensitive
information

• However, the justifications (and the models) may expose private

and confidential information.

1. energy_pepe :-
2. sick_pepe.
3. sick_pepe:-
4. past_sick_pepe,
5. not rest_pepe.
6. rest_pepe :-
7. not machine_pepe.
8. machine_pepe :-
9. energy_pepe.
10. past_sick_pepe.

Model: { energy_pepe, … }

Justification:
energy_pepe :-

sick_pepe :-
past_sick_pepe,
not rest_pepe :-

machine_pepe :-
chs(energy_pepe).

Model: { energy_pepe, … }

Justification:
energy_pepe :-

sick_pepe :-
past_sick_pepe,
not rest_pepe :-

machine_pepe :-
chs(energy_pepe).

pág.

06

Introduction

• However, the justifications (and the models) may expose private

and confidential information.

• So, we must protect these sensitive information:

a) By manipulating the justification.

1. energy_pepe :-
2. sick_pepe.
3. sick_pepe:-
4. past_sick_pepe,
5. not rest_pepe.
6. rest_pepe :-
7. not machine_pepe.
8. machine_pepe :-
9. energy_pepe.
10. past_sick_pepe.

1. energy_pepe :-
2. sick_pepe.
3. sick_pepe:-
4. past_sick_pepe,
5. not rest_pepe.
6. rest_pepe :-
7. not machine_pepe.
8. machine_pepe :-
9. energy_pepe.
10. past_sick_pepe.

Introduction

pág.

07

Model: { energy_pepe, … }

Justification:
energy_pepe :-

past_sick_pepe,
not rest_pepe :-

machine_pepe :-
chs(energy_pepe).

• However, the justifications (and the models) may expose private

and confidential information.

• So, we must protect these sensitive information:

a) By manipulating the justification.

b) Applying forgetting (removing predicates in ASP programs).

Introduction

pág.

08

We present fCASP, a forgetting technique

based on s(CASP) that removes predicates in

ASP programs with Denials.

• However, the justifications (and the models) may expose private

and confidential information.

• So, we must protect these sensitive information:

a) By manipulating the justification.

b) Applying forgetting (removing predicates in ASP programs).

Background: ASP and s(CASP)

pág.

09

provides

justifications in

natural language

can manipulate the

justifications

(#show and --short)

solves negated atoms

‘not p(X)’ against

dual rules

• Answer Set Programming is based on the stable model semantics:

• Supports non-stratified negation (even loops).

• May provide multiple models.

• We extend ASP with double default negations (not not).

• s(CASP) is a goal-directed interpreter of ASP with Constraints:

fCASP removes predicates from ASP programs with denials:

• Supports even and odd loops.

• Based on s(CASP) dual rules.

• Implemented as part of s(CASP).

The fCASP algorithm consists of 4+1 steps:

1. Add auxiliary predicates (neg_x).

2. Generate the simplified dual rule(s) using s(CASP).

3. Forget the predicate and its negation.

4. Clean extra clauses and add double negations.

5. (Optional) Transform double negations.

• Could be extended to support variables and constraints.

fCASP: Design

pág.

010

fCASP: Implementation

pág.

011

1 f_casp([Pred|Preds], P_0, P_Forgetting, Flag) :-
2 transform_even_loops(Pred, P_0, P_1a, Neg_Pred), % Step 1
3 add_clauses_if_needed(Pred, P_1a, P_1b),
4 delete_auto_calls(Pred, P_1b, P_1c),
5 generate_dual(Pred, P_1c, Dual_Rule), % Step 2
6 forget_pred(Pred, Dual_Rule, P_1c, P_3), % Step 3
7 restore_even_loop(Neg_Pred, P_3, P_4a), % Step 4
8 restore_facts_missing(P_4a, P_4b),
9 f_casp(Preds, P_4b, P_Forgetting, Flag). % Repeat 1,2,3,4
10 f_casp([], P_Forgetting, P_Forgetting, 0). % Skip Step 5
11 f_casp([], P_Forgetting, P_sCASP, 1) : % Step 5
12 transform_double_negations(P_Forgetting, P_Scasp).

• Available at https://gitlab.software.imdea.org/ciao-lang/sCASP

https://gitlab.software.imdea.org/ciao-lang/sCASP

fCASP: Usage instructions

pág.

012

--forget = LIST[/F]

List of predicates

to be forgotten

F = 0 skip step 5

F = 1 (default) execute step 5

• To apply fCASP, just run s(CASP) using the following flag:

• E.g.: scasp energy.pl --forget=‘sick_pepe’

DEMO

fCASP: Example

pág.

013

Original program: fCASP {sick_pepe}:

• Forgetting ‘sick_pepe’.

1. energy_pepe :-
2. past_sick_pepe,
3. not rest_pepe.
4. rest_pepe :-
5. not machine_pepe.
6. machine_pepe :-
7. energy_pepe.
8. past_sick_pepe.

{ energy_pepe, past_sick_pepe,
not rest_pepe, machine_pepe }

1. energy_pepe :-
2. sick_pepe.
3. sick_pepe:-
4. past_sick_pepe,
5. not rest_pepe.
6. rest_pepe :-
7. not machine_pepe.
8. machine_pepe :-
9. energy_pepe.
10. past_sick_pepe.

{ energy_pepe, sick_pepe, past_sick_pepe,
not rest_pepe, machine_pepe }

Preliminary validation through examples

pág.

014

1 q :- not not q,
2 b.
3 a :- q.
4 c :- not q.

{c}

1 a :- not neg_1,
2 b.
3 c :- not not neg_1.
4 neg_1 :- not not neg_1.
5 neg_1 :- not b.

{c, neg_1}

• Example with double negations from Berthold et al. 2019 :

fCASP {p,q}:Original program:

Preliminary validation through examples

pág.

015

1 q :- not not q,
2 b.
3 a :- q.
4 c :- not q.

{c}

1 a :- not neg_1,
2 b.
3 c :- not not neg_1.
4 neg_1 :- not not neg_1.
5 neg_1 :- not b.

{c, neg_1}

• Comparing the required auxiliary predicates (fAC vs. fCASP):

fAC {p,q}:

1 a :- b,
2 δq.
3 c :- not δq.
4 c :- not b.
5 δq :- not not δq.

{c} {c, δq}

fCASP {p,q}:Original program:

Comparison between forgetting operators

pág.

016

(UP) (SP) Loops Commutative Predicates Constraints

fSU
X X X X

fSP Limited X X X X

f*SP Limited X X

fAC
X X

fCASP WiP WiP

Transparent and fair energy assignment applying fCASP

pág.

017

• Consider local power generation managed by an agricultural

cooperative to provide an alternative energy supply.

• Its assignment can encourage better practices if we base the

energy distribution criteria on human-values.

• E.g., on a fair income for agricultural workers.

• But to rely on the decision process, the

members want an explanation.

However, the explanation of a decision

must not expose members’ trade secrets.

Transparent and fair energy assignment applying fCASP

pág.

018

Alex

Adam

Productivity Salary

Cooperative

Productivity Salary

= fair

= unfair

Transparent and fair energy assignment applying fCASP

pág.

019

pág.

020

1 over_40_bea :- not neg_over_40_bea.
2 neg_over_40_bea :- not over_40_bea.
3

4 generational_renewal(bea,0) :- over_40_bea.
5 generational_renewal(bea,100) :- not over_40_bea.
6

7 salary(bea,Salary) :-
8 base_salary(bea,S0),
9 generational_renewal(bea,S1),
10 holiday_worked(bea,S2),
11 Salary is S0+S1+S2.

Alex’s program:

Transparent and fair energy assignment applying fCASP

1 percentages([alex(PercentageAlex), …]):-
2 fair_income_alex(PointsAlex),
3 fair_income_adam(PointsAdam),
4 …
5 ponder(PointsAlex, Max, PercentageAlex).
6

7 fair_income_alex(PointsAlex):-
8 salary(bea, Salary),
9 …
10 productivity(bea, Productivity),
11 …
12 fair_income_adam(PointsAdam), :-
13 …

Cooperative program:

pág.

021

Transparent and fair energy assignment applying fCASP

1 over_40_bea :- not neg_over_40_bea.
2 neg_over_40_bea :- not over_40_bea.
3

4 generational_renewal(bea,0) :- over_40_bea.
5 generational_renewal(bea,100) :- not over_40_bea.
6

7 salary(bea,Salary) :-
8 base_salary(bea,S0),
9 generational_renewal(bea,S1),
10 holiday_worked(bea,S2),
11 Salary is S0+S1+S2.

Alex’s program:

business secrecy
(salary supplements)

pág.

022

After forgetting sensitive predicates:

1 neg_1 :- not neg_2.
2 neg_2 :- not neg_1.
3

4 salary(bea, Salary) :-
5 S0 = 900,
6 neg_2,
7 S1 = 0,
8 S2 = 0,
9 Salary is S0 + S1 + S2.
10

11 salary(bea,Salary) :-
12 S0 = 900,
13 neg_1,
14 S1 = 100,
15 S2 = 0,
16 Salary is S0+S1+S2.

Transparent and fair energy assignment applying fCASP

1 over_40_bea :- not neg_over_40_bea.
2 neg_over_40_bea :- not over_40_bea.
3

4 generational_renewal(bea,0) :- over_40_bea.
5 generational_renewal(bea,100) :- not over_40_bea.
6

7 salary(bea,Salary) :-
8 base_salary(bea,S0),
9 generational_renewal(bea,S1),
10 holiday_worked(bea,S2),
11 Salary is S0+S1+S2.

Alex’s program:

pág.

023

percentages([adam(10.13), alex(29.27), …]) :-
…
fair_income_alex(1.08) :-

salary(bea,900) :-
base_salary(bea,900),
generational_renewal(bea,0) :-

over_40_bea :-
not neg_over_40_bea :-

chs(over_40_bea).
holiday_worked(bea,0),
900 is 900+(0+0).

productivity(bea,1040) :-
…

fair_income_adam(0.74) :-
…

Original justification

After forgetting sensitive predicates

After manipulating the justification

percentages([adam(10.13), alex(29.27), …]) :-
…
fair_income_alex(1.08) :-

salary(bea,900) :-
900 is 900+(0+0).
…

Transparent and fair energy assignment applying fCASP

percentages([adam(10.13), alex(29.27), …]) :-
…

fair_income_alex(1.08) :-
salary(bea,900) :-

neg_2 :-
not neg_1 :-

chs(neg_2).
900 is 900+(0+0).
…

pág.

024

• We have presented and evaluated

fCASP, a forgetting operator that:

• Supports even loops

• Can be extended to support

predicates and constraints

• We have applied fCASP to achieve a

fair (and trustworthy) energy

distribution decision model.

• Extend it with variables, arithmetic

constraints and recursive predicates.

• Determining and proving formally the

fCASP’s forgetting properties.

• Splitting CASP programs based on

their predicate stratification.

Future workConclusions

thank you

Arias, J., Carro, M., Chen, Z., and Gupta, G. (2020). Justifications for Goal-Directed Constraint Answer Set Programming.

In: Proceedings 36th International Conference on Logic Programming (Technical Communications). Vol. 325. EPTCS.

Open Publishing Association, pp. 59–72. doi: 10.4204/ EPTCS.325.12.

Arias, J., Carro, M., Salazar, E., Marple, K., and Gupta, G. (2018). Constraint Answer Set Programming without Grounding.

In: Theory and Practice of Logic Programming 18(3-4), pp. 337–354. doi: 10.1017/S1471068418000285.

Berthold, M. (2022). On Syntactic Forgetting with Strong Persistence. In: Proceedings of the International Conference on

Principles of Knowledge Representation and Reasoning. Vol. 19, pp. 43–52.

Berthold, M., Gonçalves, R., Knorr, M., and Leite, J. (2019). Forgetting in Answer Set Programming with Anonymous

Cycles. In: Progress in Artificial Intelligence: 19th Conference on Artificial Intelligence EPIA. Springer, pp. 552–565.

doi: 10.1007/978-3-030-30244-3_46.

Fidilio-Allende, L. and Arias, J. (2024). fCASP: A forgetting technique for XAI based on goal-directed constraint ASP

models. In: XXIII Jornadas sobre Programación y Lenguajes (PROLE). url: https://hdl.handle.net/11705/PROLE/2024/13.

Fidilio-Allende, L. and Arias, J. (2024). Private-Safe (Logic-based) Decision Systems for Energy Assignment in Agricultural

Cooperatives. In: Workshop on Adaptive Smart Areas and Smart Agents at PAAMS.

Bibliography I

Gonçalves, R., Knorr, M., and Leite, J. (2016). You can’t always forget what you want: on the limits of forgetting in Answer

Set Programming. In: Proceedings of the Twenty-second European Conference on Artificial Intelligence, pp. 957–965.

Gonçalves, R., Knorr, M., and Leite, J. (2023). Forgetting in Answer Set Programming–A Survey. In: Theory and Practice of

Logic Programming 23(1), pp. 111–156.

Knorr, M. and Alferes, J. J. (2014). Preserving Strong Equivalence while Forgetting. In: Logics in Artificial Intelligence: 14th

European Conference, JELIA 2014. Springer, pp. 412–425. doi: 10.1007/978-3-319-11558-0_29.

Bibliography II

	Slide 1
	Slide 2: Introduction
	Slide 3: Introduction
	Slide 4: Introduction
	Slide 5: Introduction
	Slide 6: Introduction
	Slide 7: Introduction
	Slide 8: Introduction
	Slide 9: Background: ASP and s(CASP)
	Slide 10: fCASP: Design
	Slide 11: fCASP: Implementation
	Slide 12: fCASP: Usage instructions
	Slide 13: fCASP: Example
	Slide 14: Preliminary validation through examples
	Slide 15: Preliminary validation through examples
	Slide 16: Comparison between forgetting operators
	Slide 17: Transparent and fair energy assignment applying fCASP
	Slide 18: Transparent and fair energy assignment applying fCASP
	Slide 19: Transparent and fair energy assignment applying fCASP
	Slide 20: Transparent and fair energy assignment applying fCASP
	Slide 21: Transparent and fair energy assignment applying fCASP
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

