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Introduction

• Decision models can automate the allocation of crucial 

resources in cooperative/competitive contexts.

• We can use ASP to program decision models.

1. energy_pepe :-
2. sick_pepe.
3. sick_pepe:-
4. past_sick_pepe,
5. not rest_pepe.
6. rest_pepe :-
7. not machine_pepe.
8. machine_pepe :-
9. energy_pepe.
10. past_sick_pepe.
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Introduction

• Decision models can automate the allocation of crucial 

resources in cooperative/competitive contexts.

• We can use ASP to program decision models.

• Explainability is needed to ensure trustworthiness.

• ASP programs/models can provide justifications.

Model: { energy_pepe,  … }

Justification:
energy_pepe :-

sick_pepe :-
past_sick_pepe,
not rest_pepe :-

machine_pepe :-
chs(energy_pepe).

1. energy_pepe :-
2. sick_pepe.
3. sick_pepe:-
4. past_sick_pepe,
5. not rest_pepe.
6. rest_pepe :-
7. not machine_pepe.
8. machine_pepe :-
9. energy_pepe.
10. past_sick_pepe.
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Introduction

• Decision models can automate the allocation of crucial 

resources in cooperative/competitive contexts.

• We can use ASP to program decision models.

• Explainability is needed to ensure trustworthiness.

• ASP programs/models can provide justifications (in NL).

Pepe gets electric power, because
Pepe is sick, because

Pepe was sick yesterday, and
there is no evidence that Pepe has rested, because

Pepe has used the machine, because
it is assumed that Pepe gets electric power.

1. energy_pepe :-
2. sick_pepe.
3. sick_pepe:-
4. past_sick_pepe,
5. not rest_pepe.
6. rest_pepe :-
7. not machine_pepe.
8. machine_pepe :-
9. energy_pepe.
10. past_sick_pepe.

Model: { energy_pepe,  … }

Justification:
energy_pepe :-

sick_pepe :-
past_sick_pepe,
not rest_pepe :-

machine_pepe :-
chs(energy_pepe).
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Introduction

Sensitive 
information

• However, the justifications (and the models) may expose private 

and confidential information.

1. energy_pepe :-
2. sick_pepe.
3. sick_pepe:-
4. past_sick_pepe,
5. not rest_pepe.
6. rest_pepe :-
7. not machine_pepe.
8. machine_pepe :-
9. energy_pepe.
10. past_sick_pepe.

Model: { energy_pepe,  … }

Justification:
energy_pepe :-

sick_pepe :-
past_sick_pepe,
not rest_pepe :-

machine_pepe :-
chs(energy_pepe).



Model: { energy_pepe,  … }

Justification:
energy_pepe :-

sick_pepe :-
past_sick_pepe,
not rest_pepe :-

machine_pepe :-
chs(energy_pepe).
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Introduction

• However, the justifications (and the models) may expose private 

and confidential information.

• So, we must protect these sensitive information:

a) By manipulating the justification.

1. energy_pepe :-
2. sick_pepe.
3. sick_pepe:-
4. past_sick_pepe,
5. not rest_pepe.
6. rest_pepe :-
7. not machine_pepe.
8. machine_pepe :-
9. energy_pepe.
10. past_sick_pepe.



1. energy_pepe :-
2. sick_pepe.
3. sick_pepe:-
4. past_sick_pepe,
5. not rest_pepe.
6. rest_pepe :-
7. not machine_pepe.
8. machine_pepe :-
9. energy_pepe.
10. past_sick_pepe.

Introduction
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Model: { energy_pepe,  … }

Justification:
energy_pepe :-

past_sick_pepe,
not rest_pepe :-

machine_pepe :-
chs(energy_pepe).

• However, the justifications (and the models) may expose private 

and confidential information.

• So, we must protect these sensitive information:

a) By manipulating the justification.

b) Applying forgetting (removing predicates in ASP programs).
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We present fCASP, a forgetting technique 

based on s(CASP) that removes predicates in 

ASP programs with Denials.

• However, the justifications (and the models) may expose private 

and confidential information.

• So, we must protect these sensitive information:

a) By manipulating the justification.

b) Applying forgetting (removing predicates in ASP programs).



Background: ASP and s(CASP)
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provides 

justifications in 

natural language

can manipulate the 

justifications

(#show and --short)

solves negated atoms 

‘not p(X)’ against

dual rules

• Answer Set Programming is based on the stable model semantics:

• Supports non-stratified negation (even loops).

• May provide multiple models.

• We extend ASP with double default negations (not not).

• s(CASP) is a goal-directed interpreter of ASP with Constraints:



fCASP removes predicates from ASP programs with denials:

• Supports even and odd loops.

• Based on s(CASP) dual rules.

• Implemented as part of s(CASP).

The fCASP algorithm consists of 4+1 steps:

1. Add auxiliary predicates (neg_x).

2. Generate the simplified dual rule(s) using s(CASP).

3. Forget the predicate and its negation.

4. Clean extra clauses and add double negations.

5. (Optional) Transform double negations.

• Could be extended to support variables and constraints.

fCASP: Design
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fCASP: Implementation
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1 f_casp([Pred|Preds], P_0, P_Forgetting, Flag) :-
2 transform_even_loops(Pred, P_0, P_1a, Neg_Pred), % Step 1
3 add_clauses_if_needed(Pred, P_1a, P_1b),
4 delete_auto_calls(Pred, P_1b, P_1c),
5 generate_dual(Pred, P_1c, Dual_Rule), % Step 2
6 forget_pred(Pred, Dual_Rule, P_1c, P_3), % Step 3
7 restore_even_loop(Neg_Pred, P_3, P_4a), % Step 4
8 restore_facts_missing(P_4a, P_4b),
9 f_casp(Preds, P_4b, P_Forgetting, Flag). % Repeat 1,2,3,4
10 f_casp([], P_Forgetting, P_Forgetting, 0). % Skip Step 5
11 f_casp([], P_Forgetting, P_sCASP, 1) : % Step 5
12 transform_double_negations(P_Forgetting, P_Scasp).

• Available at https://gitlab.software.imdea.org/ciao-lang/sCASP

https://gitlab.software.imdea.org/ciao-lang/sCASP


fCASP: Usage instructions
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--forget = LIST[/F]

List of predicates 

to be forgotten

F = 0 skip step 5

F = 1 (default) execute step 5

• To apply fCASP, just run s(CASP) using the following flag:

• E.g.: scasp energy.pl --forget=‘sick_pepe’ 

DEMO



fCASP: Example
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Original program: fCASP {sick_pepe}:

• Forgetting ‘sick_pepe’.

1. energy_pepe :-
2. past_sick_pepe,
3. not rest_pepe.
4. rest_pepe :-
5. not machine_pepe.
6. machine_pepe :-
7. energy_pepe.
8. past_sick_pepe.

{ energy_pepe, past_sick_pepe,
not rest_pepe,  machine_pepe }

1. energy_pepe :-
2. sick_pepe.
3. sick_pepe:-
4. past_sick_pepe,
5. not rest_pepe.
6. rest_pepe :-
7. not machine_pepe.
8. machine_pepe :-
9. energy_pepe.
10. past_sick_pepe.

{ energy_pepe,  sick_pepe,  past_sick_pepe,
not rest_pepe,  machine_pepe }



Preliminary validation through examples
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1 q :- not not q,
2 b.
3 a :- q.
4 c :- not q.

{c}

1 a :- not neg_1,
2 b.
3 c :- not not neg_1.
4 neg_1 :- not not neg_1.
5 neg_1 :- not b.

{c, neg_1}

• Example with double negations from Berthold et al. 2019 :

fCASP {p,q}:Original program:



Preliminary validation through examples
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1 q :- not not q,
2 b.
3 a :- q.
4 c :- not q.

{c}

1 a :- not neg_1,
2 b.
3 c :- not not neg_1.
4 neg_1 :- not not neg_1.
5 neg_1 :- not b.

{c, neg_1}

• Comparing the required auxiliary predicates (fAC vs. fCASP):

fAC {p,q}:

1 a :- b,
2 δq.
3 c :- not δq.
4 c :- not b.
5 δq :- not not δq.

{c}         {c, δq}

fCASP {p,q}:Original program:



Comparison between forgetting operators
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(UP) (SP) Loops Commutative Predicates Constraints

fSU
X X X X

fSP Limited X X X X

f*SP Limited X X

fAC
X X

fCASP WiP WiP



Transparent and fair energy assignment applying fCASP
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• Consider local power generation managed by an agricultural 

cooperative to provide an alternative energy supply.

• Its assignment can encourage better practices if we base the 

energy distribution criteria on human-values.

• E.g., on a fair income for agricultural workers.

• But to rely on the decision process, the

members want an explanation.

However, the explanation of a decision

must not expose members’ trade secrets.



Transparent and fair energy assignment applying fCASP
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Alex

Adam

Productivity Salary

Cooperative

Productivity Salary

= fair

= unfair



Transparent and fair energy assignment applying fCASP
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1 over_40_bea :- not neg_over_40_bea.
2 neg_over_40_bea :- not over_40_bea.
3

4 generational_renewal(bea,0) :- over_40_bea.
5 generational_renewal(bea,100) :- not over_40_bea.
6

7 salary(bea,Salary) :-
8 base_salary(bea,S0),
9 generational_renewal(bea,S1),
10 holiday_worked(bea,S2),
11 Salary is S0+S1+S2.

Alex’s program:

Transparent and fair energy assignment applying fCASP

1 percentages([alex(PercentageAlex), …]):-
2 fair_income_alex(PointsAlex),
3 fair_income_adam(PointsAdam),
4 …
5 ponder(PointsAlex, Max, PercentageAlex).
6

7 fair_income_alex(PointsAlex):-
8 salary(bea, Salary),
9 …
10 productivity(bea, Productivity),
11 …
12 fair_income_adam(PointsAdam), :-
13 …

Cooperative program:
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Transparent and fair energy assignment applying fCASP

1 over_40_bea :- not neg_over_40_bea.
2 neg_over_40_bea :- not over_40_bea.
3

4 generational_renewal(bea,0) :- over_40_bea.
5 generational_renewal(bea,100) :- not over_40_bea.
6

7 salary(bea,Salary) :-
8 base_salary(bea,S0),
9 generational_renewal(bea,S1),
10 holiday_worked(bea,S2),
11 Salary is S0+S1+S2.

Alex’s program:

business secrecy
(salary supplements)
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After forgetting sensitive predicates:

1 neg_1 :- not neg_2. 
2 neg_2 :- not neg_1.
3

4 salary(bea, Salary) :-
5 S0 = 900,
6 neg_2,
7 S1 = 0,
8 S2 = 0,
9 Salary is S0 + S1 + S2.
10

11 salary(bea,Salary) :-
12 S0 = 900,
13 neg_1,
14 S1 = 100,
15 S2 = 0,
16 Salary is S0+S1+S2.

Transparent and fair energy assignment applying fCASP

1 over_40_bea :- not neg_over_40_bea.
2 neg_over_40_bea :- not over_40_bea.
3

4 generational_renewal(bea,0) :- over_40_bea.
5 generational_renewal(bea,100) :- not over_40_bea.
6

7 salary(bea,Salary) :-
8 base_salary(bea,S0),
9 generational_renewal(bea,S1),
10 holiday_worked(bea,S2),
11 Salary is S0+S1+S2.

Alex’s program:
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percentages([adam(10.13), alex(29.27), …]) :-
…
fair_income_alex(1.08) :-

salary(bea,900) :-
base_salary(bea,900),
generational_renewal(bea,0) :-

over_40_bea :-
not neg_over_40_bea :-

chs(over_40_bea).
holiday_worked(bea,0),
900 is 900+(0+0).

productivity(bea,1040) :-
…

fair_income_adam(0.74) :-
…

Original justification

After forgetting sensitive predicates

After manipulating the justification

percentages([adam(10.13), alex(29.27), …]) :-
…
fair_income_alex(1.08) :-

salary(bea,900) :-
900 is 900+(0+0).
…

Transparent and fair energy assignment applying fCASP

percentages([adam(10.13), alex(29.27), …]) :-
…

fair_income_alex(1.08) :-
salary(bea,900) :-

neg_2 :-
not neg_1 :-

chs(neg_2).
900 is 900+(0+0).
…
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• We have presented and evaluated 

fCASP, a forgetting operator that:

• Supports even loops

• Can be extended to support

predicates and constraints

• We have applied fCASP to achieve a 

fair (and trustworthy) energy 

distribution decision model.

• Extend it with variables, arithmetic 

constraints and recursive predicates.

• Determining and proving formally the

fCASP’s forgetting properties.

• Splitting CASP programs based on 

their predicate stratification. 

Future workConclusions

thank you
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